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lmproved Fotest Glassification in the
Northern Lake States

Using Multi-Temporal Landsat lmagery
Peter T. Wolter, David J. Mladenoff, George E. Host, and Thomas R. Crow

Abstmct
Forest classifications using single date Landsat rM data have
been only moderutely successful in separating forest cover
types in the northern Lake States region. Few regional forest
classificotions have been presented that achieve genus or
species level accuracy. We developed a more specific forest
cover classification using rtr't data from early summer in con-
junction with four uss dates to capture phenological changes
of different tree species. Among the 22 forest types classifed,
multi-temporal image analysis aided in separating 1.3 types.
Of greatest significance, trembling aspen, sugar maple, nor-th-
ern rcd oak, northern pin oak, black ash, and tamarack were
successfully clossified. The overoll classification occuracy
was 83.2 percent and the forest classification accuracy was
80.1 percent. This approach may be useful for broad-scale
forest cover monitoring in other areas, particularly where an-
cillary dato layers are not available.

Introduction
Forest cover type mapping in the northern Lake States (Min-
nesota, Wisconsin, and MichiganJ using spaceborne sensors
has been a forest management goal since the launch of Land-
sat-1 on 23 July 1972. Forest classifications of large regions
with Anderson Level III precision (Anderson et aL,, L976) are
especially needed to assist landscape-scale analysis and man-
agement objectives (Mladenoff ef 01., 1993; Mladenoff and
Pastor, 1993). Unfortunately, detailed level III forest cover
mapping efforts using a single date of Landsat Multispectral
Scanner (lrss) data have been largely unsuccessful (Mead
and Meyer, 1977; Roller and Visser, 1980; Downs, 1gB1),
Moore and Bauer (rggo) concluded that forest heterogeneity
in northern Minnesota and the suboptimal spectral and radio-
metric resolution of the MSS sensor preclude detailed classifi-
cation. The Thematic Mapper (rv) sensors aboard Landsats 4
and 5 (launched in 1982 and 1.984, respectively) provide en-
hanced spatial, spectral, and radiometric resolution superior
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to the MSS sensor (Williams et al., 1,984: Toll, 1985), The ad-
dition of two middle infrared bands (band 5, 1..55 to 1.75pm,
and band 7,2.o8 to 2.35pm), sensitive to moisture content of
vegetation (Tucker, 1980; Ripple, 1986; Hunt ef al,, tgBZ;
Hunt and Rock, 1gB9; Wolter, 1990), has been shown to im-
prove forest classification results (Toll, 1sB5; Benson and
DeGloria, 1985; Stenback and Congalton, L990; Moore and
Bauer, 1990). However, the increased resolution of the TM
sensor has not resulted in forest cover classifications of suffi-
cient detail (i,e., Anderson Level III) to warrant practical use
of this technology by forestland managers (Skidmore and
Turner, 19BB). Classifications using multi-temporal or multi-
phenological imagery have potential for higher forest classifi-
cation precision over single-date classifications (Schriever
and Congalton, 1993). In this paper we develop an applica-
tion of this multi-phenological approach to classify dominanl
forest species within northern Lake States conditions.

0bjectives
The oblectives of this study include

o Developing a forest classification with dominant tree species
Ievel precision within northern Lake States conditions,

o Using ltss digital data to capture major phenological events
of hardwood forest cover tyPes,

o Reassessing the utility of vss data for multi-temporal or
multi-phenologicai forest classifications, and

o Determining the practicality of a layered classification ap-
proach utilizing image ratioing and ratio differencing tech-
niques for multi-temporal image analysis.

Background
There are few accounts of research where TM data have been
used to classify northern mesic and boreal Lake States for-
ests. Studies that used Tv or Thematic Mapper Simulator
(rus) data in this region have covered small areas (Shen ef
o/., tgB5; Hopkins et ol., 1.sBB; Moore and Bauer, 1990; Bol-
stad and Lillesand, 1992) relative to the 34,225-Wrf coverage
of a full Landsat scene. Using airborne TMS in northern Min-
nesota, Shen ef o1. (1985) achieved 84.2 percent accuracy for
five forest species: red pine (Plnus resinosa), iack pine (P.
banksiana), black spruce (Picea mafiana), paper birch (Be-
tula papyfifero), and trembli (Populus tremuloides).tula papynlera), and tremrtltng aspen lropulu
Theii 23-km'z study area was ideal as it contained mostly
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pure, spatially homogeneous cover types. Furthermore, be-
cause the TMS instrument was flown at an altitude of 72OO
m, atmospheric affects may have been negligible. Buchheim
et al. (1985), using simulated spor (Systeme Probatoire d'Ob-
servation de Ia Terre) data of a 60-km' study area in north-
western Wisconsin, were able to visually discriminate
Anderson level III (species) forest types. However, while
computer-aided classification (maximum likelihood) was ex-
cellent at level I (96 percent overall accuracy) and level II
(91 percent overall accuracy), level III classification precision
(90 percent overall accuracy) was limited to lowland types:
white-cedar-balsam fir (Thuia occidentolis-Abies balsamia),
tamarack (Larix laricino), and black spruce. Hopkins ef 41.
(rgaa) used Tru data of a 15-km' study area in northwestern
Wisconsin and reported Anderson Level III accuracy for red
pine and jack pin-e but only Level II accuracy for remaining
forest classes. Hopkins ef o1., (1988) and Shen ef 01. (1985)
considered conditions in their respective studv areas unre-
presentative of typical northern Like States foiest cover.

In northern Wisconsin, Bolstad and Lillesand (19s2)
combined a priori information (soil and terrain position) and
TM data in a maximum-likelihood classification of two study
areas (each 300 km'z). Pooled classification accuracy for one
of the areas reached 94 percent for northern hardwoods, red
pine, jack pine, pine/haidwood. upland brush, lowland coni-
fer, lowland brush, Sphagnum, lowland vegetation, crop/pas-
ture, soil/urban, aquatic vegetation, and water, an increase of
24 percent compared to the same area classified without o
priori knowledge. However, genus or species level discrimi-
nation was not obtained for most forest types. The ancillary
data they used were manually digitized or scanned from 1:
24,000-scale U. S. Geological Survey maps (terrain position)
and 1:2o,0oo-scale U. S. Soil Conservation Service soil sur-
vey maps. Unfortunately, these types of ancillary data are
not yet conveniently available in contiguous digital form for
many areas (Mladenoff and Host, 1994). To manually digitize
or scan these data layers for large regional classifications
would be an enormous task. Multi-temporal image analysis
provides additional forest cover informition without reiiance
on human-derived ancillary data.

Changes in spectral reflectance caused by phenological
differences among temperate forest tree species may allow
for Anderson level III forest cover tvpe classification on a re-
gional scale. Large seasonal variations in forest species spec-
tral response in the visible portion of the electromagnetic
spectrum (Miller et o1,,1991.; Eder, 1989; Schwaller and
Tkach, 1985) and phenological differences in senescence
among tree species (Ahlgren, 1957; Sayn-Wittgenstein, 1.961;
Eder, 1989) present unique forest classification opportunities.
The accumulation or unmasking of pigments such as antho-
cyanins (responsible for scarlet to red leaf coloring), carote-
noids (orange to yellow coloring), tannins (brown coloring),
and xanthophylls (yellow coloring) following the denaturing
of chlorophyll are responsible for spectral change (Goodwin,
1958; Moore, 1965; Sanger, 1.971.;Boyer ef o1., L988). Boyer
ef d1. (1988) point out that tree species characterized by se-
quential chloroplast decline (such as Quercus polusfris) may
be significantly different spectrally from tree species exhibit-
ing synchronous chloroplast decline.

Kalensky (192+) states that significant improvements in
multi-date image classification could be made if the images
used were selected on the basis of spectral patterns rather
than on the basis of image availability alone. Kalensky and
Scherk (1975) analyzed single-stage classification accuracies
for various combinations of spring to autumn vSS data for a
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forested area near Ottawa, Canada. For discrimination of co-
niferous forest, deciduous forest, and agricultural land using
a maximum-likelihood decision rule. thev found that three
dates of MSS imagery from |une. September, and October
provided the best results (84 percent overall classification ac-
curacy) over all other single- or multiple-date classifications
tested. The October MSS scene captured peak senescence for
most hardwoods while the |une MSS scene captured hard-
wood leaf flush. Kalensky and Scherk (tgzs) concluded that,
although the October, fune, and September MSS scenes indi-
vidually produced low overall classification accuracies (67
percent, 69 percent, and 81 percent, respectively), their col-
lective use mitigated the effects of individual image noise.
Beaubien (1979) concluded that comparing or superimposing
MSS images taken at different seasons provides better con-
trast among certain types of vegetation in eastern Quebec.
Using rrass data for a classification of the Crater Lake Na-
tional Park region, Walsh (1980) found that September im-
agery provided more information than summer MSS data due
to the phenological condition of vegetation and the Iower
sun an8le.

Conversely, Kan and Weber (1978) determined that there
was no clear benefi,t of multiple-date classifications over sin-
gle-date classifications using MSS data for nine broad vegeta-
tion communities across the United States (including central
hardwoods, northern hardwoods, northern conifers, and bo-
real). Nelson et al. (1984) stated that senescent imagery
should be avoided for forest classifications in New England.
Their imagery recorded the later stages of senescence where
many forest stands were leafless. Similarly, Toll (1985) in a
Maryland study used both November (uss and ru) and luly
(uss and ru) data in a comparison between classification po-
tentials of the two sensors. ToU (1985) concluded that the
November TM classification accuracy was not significantly
better than MSS accuracy. This result was attributed to fall
color variability and foliar loss in the November imagery,
Their November results also suggest that MSS data may be
superior to TM data when analyzing senescent imagery. That
is, the greater pixel size of MSS data (79 by 56 m) could alle-
viate some of the spatial/spectral heterogeneity caused by au-
tumn senescence.

The identification of tree species on aerial photographs
using phenological aids has been studied in great detail
(Sayn-Wittgenstein, 1961). Eder (fge9) used true color aerial
photography of autumn senescence to map hardwood forest
species in the Medford Ranger District of the Chequamegon
National Forest in northern Wisconsin. He found best separa-
tion between sugar maples (Acer saccharum) and mixed as-
pen/paper birch stands was achieved by acquiring photogra-
phy during the peak of sugar maple senescence. Eder
(personal comm., 1992) notes that paper birch, trembling as-
pen, and bigtooth aspen (P. grandidentato) will remain green
for approximately one week after peak sugar maple senes-
cence. Thereafter, paper birch tended to color a few days
prior to trembling aspen and bigtooth aspen (Ahlgren, 1957;
J.J. Eder, personal comm., 1992). Conversely, black ash (Frax-
inus nigral trees lose their leaves prior to peak sugar maple
senescence (Eder, 1989), providing a window that can last as
long as two weeks (personal observations).

Schriever and Conealton [tgg3] used tSchriever and Congalton (1993) used TM imagery cover-
hree key dates to determine if phenoloeical differencesing three key dates to determine if phenological differences

could improve forest classification accuracv of a 1052-km'z
region in southern New Hampshire. They performed separate
forest classifications on imagery from May (bud break), Sep-
tember (stable growing season), and October (senescence),
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Minnesota

Figure 1. Location of study area in northwestern Wiscon-
sin. Chequamegon National Forest (- - -).

and found that the October scene orovided the best discrimi-
nation among the hardwood species American beech (Fogus
grandifolia), northern red oak (Q. rubra), and red maple (A.
rubrum). May imagery was second best with an overall accu-
racy of 69 percent compared to 62 percent for September
and 74 percent for October classifications. Schriever and
Congalton (1993) suggest that the success of the October and
May classification over the September classification is a func-
tion of differential chlorophyll absorption, foliar moisture,
and forest canopy characteristics.

Schriever and Congalton (1993) compared the results of
three separate forest classifications with no attempt to com-
bine raw data from different dates in either a layered classifi-
cation (Weismiller ef al., lgzz: Hixson ef a1., 1980; Lozano-
Garcia and Hoffer, 1985) or a single-stage classification.
Lozano-Garcia and Hoffer (1985) state that layered classifica-
tions applied to multi-temporal satellite data are more effi-
cient and accurate than single-stage classifications. The
stepwise nature of layered classifications allows the analyst
(1) to optimize the use of specific spectral bands and (2) to
choose the best season for the identification and classifica-
tion of individual cover types (Lozano-Garcia and Hoffer,
1985 ) .

Previous work demonstrates that temporal image differ-
encing techniques are powerful tools for characterizing
changes in forest canopy characteristics (Vogelmann, 19BB;
Vogelmann and Rock, 1989). Vegetation indices such as the
normalized difference vegetation index (Nlvt) derived foom
remotely sensed data collected throughout a growing season
can enhance differences in vegetation phenology (Tucker ef
al., tgBS; Goward ef o/., tgB5; Loveland et al., Lgg'L; Samson,
1993). MSS data have been used to discriminate major
changes in green leaf biomass by combining NDVI layers from
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different dates (Sader and Winne, 1992). Some investigators
consider image differencing and image ratio differencing
techniques for change detection relatively uncomplicated
and somewhat more accurate than comparing multiple classi-
f ications (Woodwell et d1., 1983; Singh, 1986). Furthermore,
Sader and Winne (rSSz) suggest that image ratioing and im-
age ratio differencing techniques are preferred over principal
components analysis (rcR) because the transformed results of
PCA are often difficult to interpret.

Materials and Methods
Study Region
The study region encompasses an area of 28,000 km' or
roughly 83 percent of a full Landsat TM scene in northwest-
ern Wisconsin (Figure 1). The Chequamegon National Forest
is located approximately in the north-central portion of this
region. This glaciated landscape is characterized by gentle
topographic relief with boreal forests in the north along Lake
Suoerior where clav soils are often quite wet, northern mesic
for'ests on loamy mtraines which.tt"k" .,p the maiority of
the central region, northern xeric forests or pine barrens on
sandy soils, and some areas of oak savanna to the south
(Curtis, 1959; Pastor and Mladenoff, 1992). This region is a
complex mosaic of successional forest types due to wide-
spread and destructive logging practices that took place in
the late nineteenth and early twentieth centuries (Mladenoff
and Pastor, 1993; Mladenoff and Stearns, 1993).

TM lmage Acquisition Constraints
All Landsat data used correspond to Worldwide Reference
System coordinates path 26 row 28 which are centered at ap-
proximately 46"N, 91'26'W. TM image selection was based
on several constraints:

. imagery at least 90 percent cloud free

. relative humidity less than 60 percent

. wind speed less than 30 km/h
r date within 6 |une - 21 June

Satellite image data acquired for this study are summarized
in Table 1. The TM image selected was ID 5120016163 ac-
quired on 14 June 1987. According to data gathered from
three weather stations within the region, mean relative hu-
midity between 900 and 1000 hours on this date was approx-
imately 48 percent and average wind speed was 24 km/h.
Relative humidity was considered because incident and re-
flected visible radiation scattered by water vapor in the at-
mosphere could adversely affect classification precision
(Potter and Shelton, 1974). Wind speed was considered be-
cause excessive winds would expose abaxial surfaces of for-
est leaves. The axial and abaxial leaf surfaces of many plant
species have very different albedo values which may intro-
duce problematic spectral variability (Kharuk, 1992). Finally,
date was important because forest tree species are best sepa-
rated using remote sensing techniques with imagery gathered

Tnerr 1. Suvtunv or lvncrRv Useo tru rnr CLASSIFIcATIoN.

Sensor Date Season Phenology

MSS
TM
MSS
MSS
MSS

10 May 1992
14 Jun 1987
13  Sep  1985
0B Oct 1980
25 Feb lsBB

sprrng
eariy summer
early autumn
autumn
wrnter

aspen leaf flush
all Ieaves flushed
black ash leaf-off
oak senescence
tamarack leaf-off
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Pb - jack pine' P - mixed asPenDl
Pm - black sprucec' Abp - balsam fir-aspen'
Pg - white sprucel Psh - E. white pine-hardwood'
msc - mixed swamp coniferol Bpc - paper birch-coniferol

Tnerr 2. Cusstrteo Coven Tvprs AND VALIDATIoN METHoD UsED. FoREsr
Cusses lrucluoe SAF FoRrsr CrnssEsl, USFS Cusses2, and Classes

Derived Using USFS Species Codes and DNR Forest Stand Information3.

CovrR Tvprs CusstREo Ustno Murrt-TrttponAL h'fice ANALYSIS (r) AND CovER
TypES lNDrREcrLy l|pRoveo AS A RESULT or Murtt-TrvponAL IMAGE ANALYSIS (tr)'

Forest types validated using USFS and DNR forest stand information

Pr - red pinel Pt - trembling aspen3

1988) was chosen to classify the leaf-off phenology of tama-
rack (Table 1).

Spectral Calibration and Geometric Registtation
AII digital MSS and TM data were calibrated to reflectance ac-
cording to Price (1987) before geometric corrections were
made. We geometrically registered the TM imagery to UTM
zone 15 coordinates with a pixel size of 28.5 metres using
nearest-neighbor resampling with second-order polynomial
transformation equations. We achieved a root-mean-squared
error (Rusn) of unit weight of approximately 0.35 pixels for
the fit between the digital rv data and the 1:24,000-scale
USGS topographic maps using 26 evenly distributed ground
control points gathered from the USGS topographic maps.

All MSS scenes were initially transformed (first order)
from S7-metre pixels to 28.5-metre pixels using nearest-
neighbor resampling (Rrrasa : 0.0 pixels). Each MSS scene
was then coregistered to the TM digital data (bilinear interpo-
Iation resampling) using 26 image-to-image control points
per MSS scene with a second-order geometric model. AII RMS
errors were less than 0.5 pixels for the fit between 28.5-metre
MSS digital data and rM digital data. An independent assess-
ment of the MSS coregistration to the Tv digital data was per-
formed by looking at 18 check points throughout the study
area. All RMs errors were within 0.7 pixels (first order) for
the fit between 28.5-metre MSS and TM data.

Forest Classification System
We chose to follow the Society of American Foresters (sap)
classification system (Eyre, 19s0) to define most of the forest
types (Table 2). The sAF forest types used in this classifica-
tion are the same or similar to the types used by the United
States Forest Service (usns) except for the jack pine-oak. We
included a trembling aspen type to subdivide the sAF de-
scription of mixed aspen. Wisconsin Department of Natural
Resources (lNn) forest stand information (Locey, 1990) and
USFS species codes were used for forest tvpes that did not fit
either ihe sAF or usFS type descriptions (Table z). We used
DNR and USFS forest stand maps as well as 6 fune 19BB Na-
tional High Altitude Aerial Photography (uHap) as reference
information in training and assessment of the classification.
Stand maps are extremely useful as ground truth information
(Kalensky and Scherk, 1975) because they provided stand lo-
cation and an indication of stand composition (Shen ef. o1.,
1sB5).

Preliminary Classification and Validation
We used rvr bands 3 (0.63 to 0.69pm), 4 (0.76 to 0.90pm),
and 5 (t.ss to 1.75pm) to separate forest from nonforest as
well as to stratify forested regions into conifer, hardwood,
and mixed conifer-hardwood classes (Figure 2). For northern
temperate forests, these spectral regions possess practically
all the information contained in TM data. and afford the best
symmetry between classification accuracy and processing ef-
ficiency (Nelson et al., 1984; Horler and Ahern, 1986; Moore
and Bauer, 1990; Bolstad and Lil lesand, 1992). While rv
bands 4 and 5 provide for the best discrimination among for-
est types, a visible band is also necessary for discriminating
forested from nonforested types (Hopkins et al., L988).

We stratified nonforested areas from forested cover types
by applying a threshold classification algorithm on TM bands
3, 4, and 5 (Figure 2). This method of classification is similar
to a knowledge-based classification technique using TM phys-
ical principles described by Civco (1989). Forested cover

LI - tamaracktl
Fn - black asht'

ar - Northern red oakr'

Toh - Northern white-cedar'
Tch - E. hemlock-yellow birch'
Fnc - black ash-lowland conifeil'

Qe - Northern pin oakr' Qep - Northern pin oak-pinel:r
As - sugar maplen' Pbo - jack pine-oakr'

Cover types validated by photo-interpretation and field verification

sh
ff
ow
S

S S

up
of

c f

- sparsely stocked forest
- urban or pavement
- grass-forb
- cleared forestl

- shrub and herb.n
- flooded forest
- open water
- Sphagnum sp,

early in the growing season (Kan and Weber, 1978; Shen et.
d ] . . 1 9 8 5 1 .

MSS data selection was based upon availability of cloud
free dates that corresponded with the unique phenological
windows of the target forest species (Table 1). The number of
suitable dates was few due to the 16-day repeat cycle of Land-
sat and to frequent cloud coverage. MSS digital data were
chosen over TM data primarily because MSS data are more af-
fordable. In addition, MSS data are of sufficient resolution to
detect coarse forest canopy differences such as leaf-on versus
Ieaf-off (Williams, 1975) associated with the phenology win-
dows exploited in this study.

Forest Phenology and MSS lmage Acquisition
Peak fall color for sugar maple at Park Falls, Wisconsin,
roughly the center of our tM scene, is approximately 21 Sep-
tember with an annual variance of + 4 days [].J. Eder, per-
sonal comm. , 1952). One scene in the MSS archive came near
this phenological constraint (Il asosoo1.621.4, L2 September
1985). Based on personal observations, peak fall color for red
oak tended to be about two weeks later than sugar maple for
our region. There were no cloud-free MSS scenes similar in
age to our TM scene for this oak phenology window. There-
fore, an older MSS scene was selected (lo zzoael61'sr, B Octo-
ber 1sB0) (Table 1). Conversely, the best phenologic state for
the classification of trembling aspen is between trembling as-
pen leaf flush (first hardwood tree species to leaf out in
spring) and leaf flush of other associated hardwood species
such as sugar maple which leafs-out about one week later
(Sayn-Wittgenstein, 1961). This condition was best met with
scene ID 52s9216767 acquired on 10 May 1992 (Table 1).
Field verification in the north-central portion of the study
area on this date (approx. 48 km south of the northern edge
of the study region) revealed that trembling aspen leaf flush
had begun while sugar maple had not. Although aspen and
maple phenology were not observed in the southern portion
of the study area on this date, reflectance values (10 May
1992 MSS) of known sugar maple dominated stands in the
southern region Ied us to believe sugar maple leaf flush had
begun. Finally, a winter scene (ID 51.456't6221,25 February
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lmagery Used Thematic Layer Derived

Figure 2. Diagram describing each step of the forest classification,

Process Description

Threshofd TM bands 3,4, and 5 based on
average minimum and maximum refleclance for
conifer and hardwood stands.

ThrEshold TM bands 3, 4, and 5 basEd on
averagE minimum and maximum reflectance
values for mixed lorest slands.

Using the Anderson Larel ll TM classification,
mask out all cover types frorn the Oct. NDGI
image, except hardwoods, then threshold the
NDGI image to isolate oaks.

Mask out all non-oak types from Oct. MSS bands
1,2, and 4. Then classify northern red oak and
northern pin oak using a maximum likelihood
classif icalion algorithm.

Mask all non-hardwood types and oaks from ths
Sept. NDGI image. Subtraa Sept. NDGIfrom the
June NDG|to highlighl black ash stands. Then
threshold to the difference image to classily black
ash stands.

Mask non-hardwood lypes, oaks, and black ash
from the May NDVI image. Subtract June NDVI
from the May NDVlto highlight trembling aspen
stands. Then threshold the differencs image to
classify trembling aspen stands.

Mask non-conifer from the Feb. NDVI image.
Subtract Feb. NDVI trom the June NDVI to
highlight tamarack stands. Threshold to the
difference image to classily tamarack slands.

Mixed cover types containing hardwood or coniler
components with unique phenology were left out
of the above classilication steps. Therefore,
differencing and thresholding procedures wsre
repeated lor mixed torest types.

Remaining forest cover types not classilied using
muhi-temporal image analysis techniques were
stratitied using a maximum likelihood classification
algorithm.

imagery used, and intermediate layers generatecl.

TM Juno lg87
MSS Ocl. 1980
MSS May 1992
MSS F€b. 1988
MSS S€p. 1985

Jadrpinc-elq
pin oakpine,

ud
blech a!h.

bwland onilcr

t4 Junc 1987
TM 2-94-5

types have relatively high reflectance values in the near in-
frared, moderate reflectance in the middle infrared, and low
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reflectance in the red spectral regions compared with most
nonforested areas. However, some nonforest vegetation (e.g.,
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Sphagnum) has reflectance values in the near infrared spec-
tral region similar to some forest species (Vogelmann and
Moss, 1993). In contrast, middle infrared and visible ref lec-
tance tend to be lower for Spfiognum than for forested cover
tVDeS.

Spectral differences among these major classes (forest
and nonforestJ permitted the use of a general rule:

IF pixel reflectance in rrll band 3 is low (between lower and up-
per thresholds), very high in't'ru band 4 (between lower and
upper thresholds), and moderate in rv band 5 (between lower
and upper thresholds), THEN the pixel most likely represents
Iorest cover.

Bands 3, 4, and 5 average minimum and maximum reflec-
tance values for 30 forested training areas containing known
conifer and hardwood stands were used to determine thresh-
old values for the forest-nonforest classification. Once classi-
fied, a qualitative visual assessment of the classification was
performed using 6 fune 19BB color-infrared NHap. The dis-
tinction between forested and nonforested cover rvDes was
good. Confused cover types included sparsely wooded areas
such as shelterwood clearcuts, apple orchards, and forested
areas flooded by beaver activity, all of which were classified
into nonforest.

We stratified forested land into conifer, hardwood, and
mixed cover types (Anderson Level II) by again applying the
threshold classification algorithm on TM bands 3, 4, and 5
(Figure 2). Hardwood tree species have greater reflectance
than conifer species in each of these spectral regions (Vogel-
mann and Rock, 19BB) with near infrared providing the best
separab i l i t y  (Benson and DeGIor ia .  1985:  Shen e t  o l . .  tgas) .
Shen ef o1. (rses) suggested that a threshold performed on
TMS near infrared reflectance would discriminate between
hardwoods and conifers. However, mixed conifer-hardwood
stands have intermediate reflectance in Ttr,l bands 3. 4. and 5
relative to pure stands. Therefore, we selected 30 mixed con-
ifer-hardwood forest stands to determine thresholds for the
Anderson Level II forest classification. Only those stand
maps which corresponded to the same year as our TM data
wete used. Assessment of the hardwood, conifer, and mixed
forest classification precision was performed qualitatively by
visually comparing the classified data with independent
stands identified on both NHAP and forest stand maos. Corre-
spondence between ground truth information and the three
coarse forest classes was very good.

We then classified nonforested areas using the unsuper-
vised classification algorithm ISODATA (ERDAS, 1991). The
result ing 50 classes were visual ly interpreted using 6 fune
1g88 NHAP and recoded into eight classes (urban-pavement,
cleared forest, sparsely stocked forest, flooded forest, shrub-
herbaceous, grass-forb, Sphagnun spp., and open waterJ (Ta-
ble 2). No further division of the nonforested classes was
pursued.

Multi-Temporal lmage Classification Overview
The remainder of the forest classification relies predomi-
nantly on layered image classification techniques (Figure 2).
The 14 June 1987 TM image is the base image for this classi-
fication. The greatest difference in image date relative to the
base date is roughly 6.6 years (B October 1980 to 14 June
1SB7) (Table 1). The greatest absolute difference in image
date is approximately 11.6 years (Table 1). The layered clas-
sification techniques described in this paper, at most, com-
pare only small portions of data from one MSS date at each
decision step to the base TM image (Figure 2). Therefore, no
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comparisons between dates of greater temporal difference
than 6.6 years are made (Figure 2).

Vegetation indices derived from the MSS data and the
fune rM data are systematically combined utilizing subtrac-
tion to highlight and classify specific forest cover types. For
example, during early September black ash is the first hard-
wood type to lose its leaves. The Nnvl derived from satellite
data gathered shortly after black ash leaf drop exhibits lower
index values for black ash than other forest types. Classifica-
tion of black ash using one date of imagery would be diffr-
cult because (1) defoliated black ash stands and nonforested
wetlands are spectrally similar and (2) summer black ash
stands and other hardwood cover types are spectrally simi-
lar. To enhance black ash stands, then, we subtract autumn
NDVI image (leaf-off black ash) from a summer NDVr image
(leaf-on black ash). High index values (summer leaf-on maple
or aspen) minus other high index values (autumn leaf-on ma-
ple or aspen) results in a very low to negative difference. On
the other hand, a high index value (summer leaf-on black
ash) minus a low index value (autumn leaf-off black ash) re-
sults in a medium difference. A threshold applied to this dif-
ference image classifies black ash,

Forest Classification
DNR and USFS stand maps were used in combination with
field observations to verify that senescent forest types ob-
served in the October trlSS imagery were indeed northern red
oak and northern pin oak (Q. ellipsoidalis) (Plates 1a and
1b). Based upon comparisons made with September MSS im-
agery, the October MSS imagery, and forest stand maps, we
determined that the oaks were the only hardwoods still hold-
ing their leaves. Because leaf-on and leaf-off stands of trees
have very different reflectance values in the near infrared
and visible portions of the electromagnetic spectrum (Wil-
l iams, 1975, Vogelmann and Rock, 1989), a vegetation index
was chosen to discriminate oaks from defoliated hardwoods
[e.g., sugar maple, aspen, birch, and black ash).

We separated both oak species (red and pin) from other
hardwood cover types by first masking all but pure hard-
wood forest types from the October MSS data using the June
TM hardwood, conifer, and mixed forest classification (Figure
2). This method of masking the October MSS data (approx.
6.6 years older than the TM data) assured that most hard-
wood forest types between the two dates were unchanged in
terms of dominant forest species. For example, what were
mature oak dominated stands in 1987 most likely were ma-
ture oak dominated stands in 1980. Furthermore, clearcut oak
stands identified in 1980 would not have regenerated back to
oak sufficiently enough to be classified as mature hardwood
torest in 1-987. Once masking was completed, we applied a
threshold to the normalized difference greenness index (NlcI)
image derived from the October vSS data to classify oak
stands (Figure 2). Here the term "greenness" refers to the use
of visible green instead of visible red reflectance: i.e.,

NDGr = [(MSS4 - MSSI) / (rvrss+ + MSSI) + 1] x 100 (1)

We chose the MSS green band (0.b0 to 0.60pmJ over the
MSS red band (0.60 to 0.70pm) for this vegetation index be-
cause the red band of the October MSS data was corrupted by
a striping pattern that was not entirely regular. Upon visual
inspection, the MSS green band from this date had noticeably
fewer problems of this nature. Because green reflectance is
strongly correlated to red reflectance (Badhwar and Hender-
son, 1982; Badhwar et ol., 1,984; Hall et al., 1SS1), the infor-
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Plate 1. Column (1) are 14 June 1987 rM data (bands 5-4-3), column (2) are N4sS data
(bands 4-2-L), and column (3) are classified data. Row (a) shows mid-fall (8 October
1980) northern red oak senescence as yellow (a2) and classified N. red oak as dark
orange. Red oak stands are visually indistinguishable from surrounding sugar maple
dominated northern hardwood stands in the TM data (a1). (Row (b) shows senescent
N. pin oak as brownish-yellow (b2) and classified N. pin oak as cyan (b3)' Row (c)
shows the locations of three black ash stands highlighted by white lines representing
summer leaf on black ash (c1), early fall (13 September 1985) leaf-off black ash
stands as black (c2), and classified black ash stands colored dark blue (c3). Row (d)

shows trembling aspen and sugar maple-dominated northern hardwood stands in sum-
mer (d1), mid-spring trembling aspen leaf-flush (10 May 1992) as red (d2), and classi-
f ied trembling aspen stands in green and northern hardwood stands in yellow (d3).
Row (e) shows summer leaf-on tamarack as maroon (e1), winter (2 February 1988)
leaf-off tamarack as black (e2), and classified tamarack as dark red (e3).

mation derived from the NDGI was expected to be compara-
ble to the information provided by the mvr (Equation 3).
This intermediate classification was then qualitatively

PE&RS

checked against forest stand information which revealed

good discr-imination between the oak dominated stands and

other hardwood stands.
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Senescent northern red oak stands (yellow when bands
4,2, and 1 are displayed in RGB) were clearly distinguishable
from northern pin oak stands (brownish yellowl in the Octo-
ber MSS imageiy (Plates 1a2 and 1b2, respectively). Separa-
tion of the two oak species from each other was accom-
plished by performing a supervised maximumlikelihood
ilassification on the October vtSS data (bands 1', 2, and 4)
with 15 training samples for each species (Figure 2). The red
oak and pin oak types were then overlaid onto the hard-
woods class of the rv classification.

Attempts to classify sugar maple dominated northern
hardwoodi using autumn leaf color were not successful. Se-
nescence in sugar maple had not progressed suffrciently to
be distinguished from other hardwood species in the 12 Sep-
tember rbss N4ss imagery. However, field checking revealed
that defoliated regions in the September MSS imagery were -
black ash stands ihat had dropped their leaves prior to Land-
sat overpass (Plate rc). To separate black ash from remaining
hardwood cover types, all non-hardwood types and oaks
were masked from the September MSS data (Figure 2). The
black ash type was then classified as described above by up-
plying a threshold to a difference image (June Ttr'l NDGI minus
September MSS NDGI): i.e.,

rM NDGr: [(rrvr+ - rM2) I (rxrS + rM2) + 1] x 100 (2)

Like the October MSS data, the September Mss red band had
more sensor noise than did the green band; therefore, the
green band was used for the vegetation in-dex. Classified
6lack ash was then overlaid onto the hardwoods class de-
rived from the TM data. The remaining hardwood stands to
be classified were sugar maple dominated northern hard-
woods, trembling aspen, and mixed aspen.

Observationi made in the field at the time of Landsat
overpass confirmed that the 10 May 1992 MSS image was
highlighting trembling aspen leaf flush (Pbte 1d). To sepa--
rale tr6mbling aspen from other hardwood cover types, all
non-hardwoo-d foiest types, oaks, and black ash were masked
from the May MSS data. Trembling aspen was separated from
sugar maple and other hardwood species by applying a
thieshold to a difference image (May MSS NDVI minus |une
TM NDVI) (Figure 2). NDVI rather than NDGI was used for the
difference image because the red band from the May MSS im-
age did not exhibit serious sensor noise (striping): i.e.'

MSS NDVI : [(MSS4 - MSSz) / (MSS4 + MSS2) + 1] X 1OO (3)

rM NDVr - l(rrras - rM3) I (ttvrS + rM3) + 1] x 100 (4)

The trembling aspen type was then overlaid onto the hard-
woods class of the rn classification.

Sugar maple dominated hardwoods and mixed aspen
were the only hardwood types left to classify. Thirty training
polygons pei type were used to train a maximum-Iikelihood
ilaislf ication ofru bands 2,3,4, and 5 (Figure 2). Sugar ma-
ple and mixed aspen were then overlaid onto the rM hard-
woods class, thui completing the classification of hardwood
forest cover types.

Because tamarack is a deciduous conifer, winter NDVI
values were expected to be lower than other conifer !yp"t.
Stand information and field observations confirmed that leaf-
off tamarack stands were visible in the February MSS imagery
(Plate 1e). Therefore, all but pure conifer stands were
masked from the fune TM and February MSS data using the
TM conifers class as a template. Tamarack was separated
from black spruce and other coniferous types by applying a
threshold to a difference image (June Tvt NDVI minus Febru-
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ary MSS NDVI) (Figure 2). The tamarack class was then over-
laid onto the conifers class of the master TIU classification.

By applying image differencing techniques to o:rly pure
hardwood-and pure Conifer stands, remaining mixed conifer-
hardwood covei types which contained oaks, black ash, and
tamarack in combination with other species were missed.
Therefore, image differencing procedures were repeated sepa-
rately for the mixed hardwood-conifer types (Figure 2). The
resulting classified data [jack pine-oak, pin oak-pine, and
black asl-lowland conifer) were then overlaid onto the
mixed conifer-hardwood class of the master ttrl classification.

Remaining forest cover types (red pine, iack pine, black
spruce, white spruce (P. glauca), mixed swamp conifers,-
white pine (P. itrobus)-hardwood, balsam fir-aspen, hemlock-
yellowbirch (Tsuga canadensis-&. dleghaniensis), white-ce-
dar-hardwood, and paper birch-conifer) were separated using
bands 2, 3, 4, and s-of the lune tv image employing tradi-
tional iterative supervised training and classification tech-
niques (Figure 2). Training information was gathered_by
ground-based sampling and from DNR and usFS stand maps.
Fifteen training polygons per remaining class were used in
this classification.

Acculacy Assessment
Accuracy assessment of the final classification (Tables 3 and
4) was performed using usFS and oNR stand information. The
stand information was preferred as reference information for
classification validation because it contains no bias that the
investigators might introduce if conducting their own recon-
naissance (Bryant et al., 1,g1o). DNR and usps tabular forest
stand informition (rsas-r9BB), independent of data used for
training, was randomly sampled to decide which forest
stands would be used as reference data for the classification
accuracy assessment. Queries of the tabular data were made
for each forest cover type based on primary type, secondary
type, height, basal area, and harvest year. Tor example, five
queries were used to select suitable mixed white pine-hard-
wood stands. The first query selected all white pine stands
with oak as a secondary forest type. Query two added to the
first query all white pine stands whose secondary types were
eithei aspen, paper b1rch, or sugar maple dominated north-
ern hardwoods. Query three selected from the result of que-
ries one and two all stands with basal areas ) 16.09 m'/ha.

Query four chose flom the result of queries one through
three stands that were at least 9.15 m in height. Query five
ensured that the resulting stands from queries one through
four were uncut at the time of sensor overpass (t+ June
198  71 .

Once all potential reference stands were tagged, a ran-
dom numbers generator was used to select those stands that
would be used as reference data. When the use of usps and
DNR forest stand information was inappropriate (e'8., flooded
forest, urban or pavement, Sphagnum, etc.), sites were ran-
domly selected from interpreted aerial photography (6 June -
19BB NHAP) or field checked (Table 2). A minimum of 30 ref-
erence sample sites (greater than 2 ha per site) for each clas-
sified cover type was selected with the exception of jack
pine-oak (zo sites) and paper birch-conifer (zo sites). Individ-
ual sites consisted of several pixels of classified data rather
than single-pixel samples as recommended by Roller and
Visser (1980).

Results and Discussion
The overall classification accuracy was 83.2 percent (xunr :

82.5) (Table 3) while the accuracy for the forest classes was
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Classified
Data Conifer

Reference Data

Hardwood Mixed
Row User's
Total acculacy

TABLE 5. Ennon MnrRtx FoR ANDERSoN LevEr ll FonEsr CrnssEs. between 1987 and 1992 on public lands alone. Init ially, we
thought the NDGI difference image (May MSS NDGI minus June
TM NbcI) used to stratify trembling aspen stands from the re-
maining hardwood cover types (mixed aspen and su8-ar.ma-
ole dominated northern hardwoods) had missed trembling
ispen stands harvested after 14 June 1987' Closer inspection
of the NDGI difference image and the raw 1992 May MSS im-
agery revealed that trembling aspen- stands harvested be-
trireen 1987 and tg8g had apparently regenerated sufficiently
enough to be classified as trembling aspen by the difference
imag6 technique. It was not possible to determine ftom the
Uay vss data where trembling aspen harvesting operations
within this time period had occurred. Trembling aspen
stands cut later (between 1990 and 1992) were progressively
more distinguishable in the May 1992 MSS imagery. Obvi-
ously, most of the problems associated with ha-rvesting oper-
ations would have been avoided if the tvtss and ttvl data were
all from the same year. Imagery acquired within a single- year
would also eliminite any forest successional effects' Hall
(1991) found that forest succession within time spans as lit-
tle as 10 years can be significant fiom a remote sensing per-
soective.

In addition to problems associated with harvesting oper-
ations, trembling aipen leaf flush apparently had not prog-
ressed far enough in the extreme northern portion of the
study region to-be detected by the MSS sensor and was also
miss-ed using the NDGI difference image technique, Ulti- ^^
mately, trembling aspen stands missed using the Nnct differ-
ence image approach, because of harvesting operations
between isei hnd 1992 or because of delayed phenology,
were classified (maximum likelihood) using the 1'4 June 1987
TM image (bands 2,3, 4, and s) into either sugar-maple dom-
inated northern hardwoods or mixed aspen stands. This was
a relatively safe assumption because oak stands and black
ash stands had been stiatified prior to the trembling aspen
step of the classification (Figure 2).' 

Using the TM data alone to classify the remaining hard-
wood stands as well as the problems associated with using
the 10 May 1992 MSS data most likely contributed to some of
the error r-eported for trembling aspen, mixed aspen, and
sugar maple because these types are notoriously similar in
ter-ms of iu spectral and radiometric resolution. Other cover
types in which trembling aspen stands were-confused (pap.e.r
biich-conifer, balsam fir-aspen, and one black ash stand) did
have a fair amount of trembling aspen within them except
for the black ash stand. When the two aspen classes (trem-
bling aspen and mixed aspen) are combined, the aggregated
,rc"ft uttd producer's accuracies become 89 percent and 79
percent, reipectively.^ 

Higher ilassification accuracy results were obtained for
pin oaf (100 percent user's and 82 percent producer's), black
ish (aa p"."".tt user's and 98 percent -producer's), tamarack
(os percbnt user's and 82 percent producer's), black ash-low-
land conifer mix (92 percent user's and 86 percent produ-
cer's), red oak (Bs peicent user's and B7 percent producer's),
and pin oak-pine mix (e0 percent user's and q? p-ercent
producer's) (iables 3 and +). Overall, the results for red oak
ilassification are good, although some problem areas were
noticed. Red oak classification precision was lower along the
northern tier of the study area due to delayed senescence
caused by the temperature buffering effects -of Lake- Superior.
For example, when sugar maple, aspen, and paper birch . -
leaves have fallen farther to the south, as was the case with
the October MSS data, oak stands adiacent to Lake Superior
remain fully green. At the same time sugar maples, aspens,

Conifer
Hardwood
Mixed
Col. Total

260 10
2 5 6  1 0

18  1 .7  287
278 273 307

2 7 0
266
322
858

96 .3%
96.2o/o
89.1o/o

Producer's Diagonal
Accuracy  93 .5% 93.8% 93.5% to ta l :  803

Overall accuracy 93.6% KHAT : s0.a

80.1 percent (rcuar : 76.0) [Table 4) and, for Anderson
Level I I  forest classes, 93.6 percent (KHAT : 90.4) (Table 5).

The greatest amount of confusion occurred between for-
est types where only TM data were used for classification
(e.g., black spruce, white spruce, mixed swamp conifers,
white-cedar-hardwood, balsam fir-aspen, and white pine-
hardwood) (Tables 3 and +). The poor discrimination be-
tween the black spruce type (user's accuracy 61 percent and
producer's accuracy 74 percent) and the mixed swamp coni-
fer type (user's accuracy 71 percent and producer's accuracy
52 percent) may be because mixed swamp conifer types
within this region are made up of predominantly black
spruce and balsam fir with associates of white-cedar and
timarack. Beaubien (1979) found black spruce and balsam fir
were very similar in terms of vss spectral reflectance, except
when balsam fir grew in older, pure stands. When black
spruce and mixed swamp conifer types are combined, the ag-
giegated accuracy becomes 81 percent for both user's and
producer's while overall forest cover accuracy increases from
b0.1 percent to 83.2 percent (Table a). Error associated with
confusion between lowland conifer classes (i.e., black spruce,
tamarack, mixed swamp conifers) and upland conifer classes
(i .e.,  red pine, jack pine, etc.) could be resolved with the in-
corporation of digital wetlands data (Polzer, 1992) or digital
soi l  information [Bolstad and Li l lesand, 1992).

Substantial etrors also occurred between the white pine-
hardwood type and balsam fir-aspen type (Table 4). Some of

the error is due to the fact that image differencing proce-
dures used to classifu balsam fir-aspen types were aban-
doned. This procedure was unsuccessful because the May
trembling aspen leaf flush signature was eclipsed by the
more dominant balsam fir signature. Therefore, classification
of this type was performed using the June TM data alone. Of
the 44 sites which indicated white pine-hardwood in the ref-
erence data, 21 were misclassified. Nineteen of the 21, omll-
ted sites went to balsam fir-aspen (Table a). But, of the 53
balsam fir-aspen reference sites, 12 were inconectly classi-
fied though none were omitted as white pine-hardwood mix'
Six were omitted as jack pine-oak, one as pin oak-pine, three
as trembling aspen, and two as black ash. The misclassifica-
tion of two black ash stands and three trembling aspen
stands into mixed forest categories indicates errol with the
initial Anderson level II forest classification [Table s)'

Accuracies for forest cover types classified using multi-
temporal image analysis are highest for non-aspen forest-
types (Table +). Trembling aspen stands (36) were classified
wilh eO percent accuracy (Table +). But, of the 42 trembling
aspen stinds selected from the reference information, only
74 percent were correctly classified. Upon cbecking DNR and
uSFS tabular stand information, we learned that over 900 as-
pen stands in the study region were scheduled for harvest
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and paper birch trees adjacent to Lake Superior are just be-
ginning to show signs of fall color. The temperature buffering
effects of Lake Superior extend inland roughly 5 to 10 kilo-
metres, forming a gradient of senescence. Within this buffer
zone, discrimination between red oak, sugar maple, and as-
pen types was poorer than the overall classification precision
suggests. Although no attempts were made to isolate and
quantify these effects on the classification within this buffer
zone, theoretically, digital climate date could have been used
to address this problem (Host ef o1., submitted ms., 1994.).

Forest cover types classified using only TM data exhib-
ited mixed precision results (Tables 3 and 4). The user's and
producer's accuracy for red pine reached B6 percent and 94
percent, respectively. Some errors of commission occurred
between red pine plantations with high basal area (2 62 mr/
ha) and white spruce plantations of similar density. Both of
these forest types are characterized as having very dark un-
derstories devoid of ground vegetation. On the other hand,
jack pine, sugar maple, hemlock-yellow birch, and paper
birch-conifer exhibited only moderate precision with user's
and producer's accuracies of 79 percent and 91 percent, 83
percent and 84 percent, 87 percent and B0 percent, and 76
percent and g1 percent, respectively. Furthermore, white
spruce (user's accuracy 91 percent and producer's accuracy
54 percent) and white-cedar (user's accuracy 100 percent and
producer's accuracy 67 percent) exhibited poor agreement
with reference data. Oddly enough, white-cedar did not have
any errors of commission with lowland conifer types, al-
though several errors of omission with black spruce and
hemlock-yellow birch did occur. The lack of commission
errors with lowland conifer types is puzzling because the
black spruce and hemlock-yellow birch types within this re-
gion often have associates of white-cedarwithin them and
vice versa.

Some of the forest cover tvpes not directlv classified us-
ing ancillary MSs data most liiely improved in classification
precision because they were adja-cent^to forest cover types
that were classified using multi-temporal image data. For ex-
ample, classification of the sugar maple dominated northern
hardwood type was simplified because adiacent stands of red
oak, pin oak, and trembling aspen were subtracted from the
greater hardwoods type, leaving fewer hardwood types with
which sugar maple could be confused. Table 2 lists the five
forest cover types that benefitted from this indirect multi-
temporal image classification method.

It is likely that some of the within-class heterogeneity
problems, which have been the bane of many forest classifi-
cations in this region using TM data, were reduced by utiliz-
ing the spatial resolution of vss data. The 79-m, radiative
input of an MSS pixel sufficiently generalizes spatial and
spectral cover type characteristics similar to the way in
which a photo-interpreter allows for some degree of within-
class heterogeneity when delineating cover-type boundaries.
Toll (1985) alluded to the spatial and spectral generalization
properties of tr,tss data when studying sensor parameters re-
sponsible for differences in TM and MSS classification accura-
cles.

Furthermore, other studies suggest that classification ac-
curacies are likely to degrade as a result of improved spatial
resolution while other sensor parameters are kept constant
(Townsend and Justice, 1981; Toll, 1984; Latty ef d1., 19BS;
Martin et o,1., 19BB; Moore and Bauer, 1990). Because it was
only necessary in most instances to detect leaf-on versus
Ieaf-off vegetation status using the MSS data, it is doubtful
that the added spectral and radiometric resolution of lra data
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would have improved precision of multi-temporal image
classifications. One obvious advantage of using multi-tempo-
ral tv over MSS data would be the potential for more accu-
rate image coregistration. However. we question whether
repeating the procedures using exclusively TM data would
have increased classification precision enough to justify the
greater cost over MSS data. Unfortunately, the MSS sensor
was turned off on 19 October 1992. ending its life as both an
effective and affordable resource assessment tool.

Conclusions and Su$estions fu Future Research
Distinguishing among deciduous forest types in the Great
Lakes region, especially the so-called sugar maple dominated
northern hardwoods, has been very difffcult using single-date
image classifications. Using a layered, multi-temporal image
classification approach, we were able to separate two oak
species - black ash and tamarack - and, most importantly,
separate aspen types from sugar maple-dominated northern
hardwoods. It is apparent that a layered multi-temporal ap-
proach to the classification of Landsat data, combined with a
specilc knowledge of cover-type phenology, is not only pos-
sible but is preferable to single-date classifications or to 

-

multi-date classifications where only a broad knowledge of
forest phenology is incorporated into image acquisition. Us-
ing a layered multi-temporal image classification approach, a
species level forest classification was achieved with an accu-
racy of 80.1 percent (rrnr : 76.0). Accuracy for forest clas-
ses aggregated to Anderson Level II (hardwood, conifer, and
mixed) was 93,6 percent (rsar : 90.4). Overall classification
accuracy was 83.2 percent (KHAT : 82.b).

By incorporating specific knowledge of forest species
phenology, it is possible to

o Develop a forest classification with dominant tree species
level precision within northern Lake States conditions,

. Use MSS digital data to capture specific phenology of forest
cover types,

o SuccessfuIly incorporate multi-temporal uss and TM data for
detailed forest classifications, and

. Use a layered classification approach exploiting image ratio-
ing and ratio differencing techniques for multi-temporal im-
age analysis.

There clearly are advantages to this layered, multi-tem-
poral classification method where phenological changes oc-
cur across large regions. In many instances, spectral variabil-
ity within a single forest type over large regions is great due
to the effects of atmosphere, soil, climate, and aspect. To
gather enough training statistics to adequately account for
these types of variability is a difficult task. By using multi-
temporal image ratioing and ratio differencing techniques,
many of these effects are normalized, and comparatively few
training statistics are necessary.

Although the classification techniques presented in this
paper generally worked well, there is potential for improve-
ment and refinement. First, images from the same year or a
short span of years will work better when using the forest
phenology approach for forest cover-type classihcation. Con-
temporaneous imagery will minimize or eliminate problems
associated with forest harvesting operations and eriors asso-
ciated with forest succession. Second, incorporation of digi-
tal National Wetlands Inventory information or digital soils
information (soil series) would help resolve errors between
lpland and_ lowland forest classes. These types of ancillary
data, though not available to date, will be available for thii
region in the near future. Third, variations in forest phenol-
ogy within large regions remain somewhat problemalic. The-
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oretically, Iarge scale (full ru scene) forest classifications
employing digital climate data could be used to stratify these
effects. Finalty, the use of the more expensive tM data in
place of MSS data could provide some improvement in classi-
fication results due to the potential for refinements in image
coregistration accuracy. However, besides registration im-
provements, previous studies show that the 30-m spatial res-
olution of tv data is responsible for only slight increases in
classification accuracy between MSS and TM data. Therefore,
from an economic standpoint, using multi-temporal TM data
rather than MSS data (using the same methods) may not pro-
duce results that justify the added cost.
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SAOEEP '96 Caf l for Papers
Keystone Resoil, Colorado
Aprif 28 - May 1,1996

The ninth Annual Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP),
sponsored by the Environmental and Engineering Gmphysical Society (EEGS), will be held at Keystone Resot Colo-
rado, 28 April - I May, 1996. SACEEP is dedicated to sharing new applications of geophysics with those working in the
geotechical, hydrogeological environmental and regulatory as well as the geophysical professions.

Leading off on Sunday, 28 April, will be a short course on Environmental Geophysics and Groundwater Model-
ing. Planned sessions on Monday-Wednesday, 29 April -l May include:

Applications:
Evaluation of Exhistinf Structures
Prediction of In-Site Conditions
location of Buried Objects
Forensics
Site Chancteristics
lxo
Contaminant Detection

Technology Advanceme nls:
Direct Detection
Data Processing and Presentation
New Equipment Software

Rslated Topics:
Position Systems (GPS)
Data Integntion (GIS)
Relating Geochemistry to Geophysical
Parameters

Legal/Professional I ssues:
Liability
C ertifi cation/Registntion/Licensin g
ASTM Standards
Contracting

Technical papers on research on research and application of geophysical methods in geotechnical and environmen-
tal problems are requested for both onl and poster presentations. One-page abstncts are due by 1 October 1995.
Extend abstncts of all onl and poster papers will be required and due by 15 January 1996 for includsion in the
Proceedingls volume.

Abstncts should be directed to Program Chairman: Linda Hadley, SAGEEP '96, Geophysical222I East Street,
Golden CO 80401; phondfax: 303-278-1488.
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