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I 
Abstract the traditional gradient descent-based backpropagation. 1 
Traditional approaches for suitability analysis in  GIS are Through evolutionary learning from samples, a neural net- 
overlay a d  the more complicated multicriteria evaluation work adapts its connection weights to approximate the de- 
(m~). Despite being widely used, these methods have at sired output. Then, a successfully trained neural network can 
least three problems: (11 difficulties in handling spatial ,jato accomplish the suitability analysis task. A set of experiments 
possessing inaccumcy, multiple measurement scales, and is presented, The results show that the difficulties in tradi- 
factor interdependency; (2) requirements of prior knowledge tional are by evO1utionq learning and the 
in iden t ihng  criteria, assigning scores, determining criteria abfiity the neural network. 
preference, and selecting aggregation functions; and (3) typi- 
cally, an "unfriendly" user inte$ace. TO solve these prob- lntroduction to Traditional Methods 
lems, in this paper a neural network approach is  presented. Overlay 
The neural network uses a genetic algorithm as its learning The application of digital map overlay for the purpose of mechanism. A set of experiments revealed that the afore- identifying suitable areas is a classic application of GIs. In mentioned dijlficulties are overcome by the evolutionary raster GIS, for example in IDRISI (Eastman, 1995), a suitability 
learning of neural networks. Our conclusion is  that genetic map is produced from a series of Boolean images, where learning neural networks can provide an alternative for and each image represents all areas meeting the criterion being 
improvement over traditional suitability analysis methods in  depicted. These images are then combined the overlay 
GIS. combination procedure to yield a final map that shows the 

sites meeting all the specified criteria. However, overlays 
Introduction have limitations when dealing with information of a non- 
Suitability analysis usually requires making decisions among deterministic nature (Carver, 1991). 
multiple factors. There are two methods commonly practiced 
to accomplish this task in GIS: a simple overlay and the more Multicriteria Evaluation 
complicated muhicriteria evaluation (MCE). Overlay can only The general model of MB is shown in Figure 1. In the f is t  
combine deterministic digital map information to define ar- step, a set of criteria or factors is selected according to the 
eas simultaneously satisfying two or more specific criteria alternatives. For example, to locate areas suitable for buying 
(Carver, 1991). Recently, the integration of MCE into GIs has houses, Heywood (1995) considered four factors - school lo- 
attracted much attention (Carver, 1991; Heywood et al., cation, roads, urban areas, and insurance. After all the rele- 
1995; Pereira et d . ,  1993; Jankowski, 1995). It also has been vant criteria have been identified, the criterion scores, which 
observed that there are many problems in these somewhat indicate the impacts of alternatives on each criterion, need to 
conventional methods. The problems fall into three different, be determined. There exist many methods for this task (Hep- 
but not independent, categories. First, it is well known that ner, 1984; Pereira et al., 1993). In many analyses, especially 
the spatial data in GIs usually have properties that are diffi- those utilizing quantitative and mixed sources of data, the 
cult to handle by traditional methods, such as inaccuracy, criterion scores need to be standardized (Carver, 1991). A 
multiple measurement scales, and interdependency among number of methods can be used for standardization, such as 
factors. Second, traditional methods require prior knowledge additivity constraint, ratio scale properties, and interval scale 
to identify all relevant criteria, assign scores, determine the properties (Voogd, 1983). These criterion scores combined 
criterion preference, and select the aggregation function. with the criteria importance are processed by aggregation 
Methodological uncertainty and error may appear in these functions to produce the final evaluation result. The most 
procedures. Third, the interface of traditional methods usu- commonly used aggregation function may be weighted sum- 
ally makes it difficult for a user to be involved effectively in mation, in which the criterion importance is represented by 
the decision making procedure. For example, a user may be a weight. 
asked to provide a set of values, such as criteria weights. The methods for criterion importance determination and 
These questions are usually cognitively demanding and far aggregation can be classified into compensatory and noncom- 
beyond his or her intuition. In many cases, it is possible for pensatory (Hwang et al., 1981; Minch et al., 1986; Jankowski, 
a user or an expert to judge the suitability of a site through 1995). In a compensatory method, the high performance of 
the implicit gestalt method (Hopkins, 1977), but it is much an alternative achieved on one or more criteria can compen- 
more difficult to express explicitly that knowledge. sate for the weak performance of the same alternative on 
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of value functions is usually tedious and subjectivity is diffi- 
cult to avoid. 

other criteria. Weighted summation is such a method. Other 
compensatory methods include concordance analysis, analyt- 
ical hierarchy process, and ideal point. Noncompensatory 
techniques are the stepwise reduction of the set of alterna- 
tives without trading off their deficiencies along some evalu- 
ation criteria for their strengths along other criteria. 

Another promising method for suitability analysis and 
mapping is based on the Dempster-Schaefer's theory of evi- 
dence and fuzzy logic (Boham-Carter, 1994). 

Problems with Traditional Methods 
Difficulties in  handling spatial data with inaccuracy, multi- 
ple measurement scales, and factor interdependency 

Inaccuracy 
It is widely recognized that spatial data sets may contain nu- 
merous errors and inaccuracies (Macdougall, 1975; Heywood 
et al., 1995). The errors contained in a region map can be the 
error in the positioning of boundary (horizontal error) and 
the error of impurity. The lower limit to the accuracy of an 
overlay map consists of the sum of the positioning errors and 
the product of the purity of the constituent factor maps, plus 
errors which are introduced in the assembly of the final 
overlay (Macdougall, 19 75). 

Macdougall (1975) gave an illustration of the possibility 
that the purity problem alone may make the overlay maps 
differ little from a random map. If the impurities of each re- 
gion of a factor map are independent from those of another 
factor map, the purity of the overlay region is equal to the 
product of the purity of the factor maps. Table 1 illustrates 
just how low these values can be for various combinations of 
map numbers and overlay purity. 

Multiple Measurement Scales 
There are four measurement scales, from lowest level to the 
highest level: nominal, ordinal, interval, and ratio (Hammond 
et al., 1974). The nominal and ordinal data are discrete while 
the interval and ratio data are usually continuous. In many 
traditional methods, to process mixed measurement scale data, 
the continuous scaled data are first discretized. To conserve 
the continuity of data, a value function approach can be used 
(Hepner, 1984; Pereira et al., 1993). However, the construction 

Interdependency 
Factor interdependency commonly exists in GIS (Hopkins, 
1977). This may overemphasize some factors when using 
overlay or MCE because of the number of data sets which 
may have been derived from the same base data (Heywood et 
al., 1995). There are several ways to deal with factor interde- 
pendency. Some statistical techniques such as factor analysis 
can be used to generate independent factors, but limited ex- 
perimental experience suggests that, because of the data re- 
quirements and difficulty of interpretation, using factor 
analysis is not worthwhile for most suitability analyses (Hop- 
kins, 1977). In principle, nonlinear combination aggregation 
functions can handle interdependency among factors. How- 
ever, because the required mathematical relationships for the 
full range of costs and impacts are not known, the nonlinear 
combination is generally insufficient by itself (Hopkins, 
1977). Other methods that can handle interdependency of 
factors include gestalt methods, explicit identification of 
regions, and logical combination of factors (Hopkins, 1977). 
Gestalt and identification of regions methods are inapplicable 
when there are a large number of regions in the maps. The 
logical combination method can deal only with discrete data, 
and the combination rules are sometimes difficult to define. 

Requirements of Explicit Knowledge to Identify all Relevant 
Criteria, Determine Score and Criteria Preferences, and 
Select an Aggregation Function 
The first step of overlay analysis or MCE is to identify all re]- 
evant criteria without omission or redundancy. Sometimes 
this task is difficult (Janssen, 1992; Heywood et al., 1995). 
When a user determines the criteria score, criteria prefer- 
ence, and aggregation function, the problem of "method un- 
certainty" usually surfaces. Carver's (1991) experiments 
show that different evaluation techniques can significantly 
affect the outcome of the suitable site search. He suggests 
that two or more methods should be applied to dilute the ef- 
fect of technique bias. Heywood et al. (1995) used the MCE 
routines in SPANS and IDRISI to evaluate housing suitability 
and found the amount of agreement between the results of 
the two systems was 34.8 percent. The explicit requirement 
of prior knowledge also makes the user interface difficult. 

The Problem of User Interface 
The user interface of traditional methods makes it difficult 
for a user to be involved effectively in the decision making 
process. A user needs to be particularly familiar with the op- 
erational details of these techniques. In many cases, even if a 
user can judge the suitability of a site through the implicit 
gestalt method (Hopkins, 1997), it is much more difficult to 
express explicitly an expert's knowledge. It is found that 
some human knowledge is inexpressible in the form of rules 
and sometimes may not be understandable even though it 
can be expressed (Hoffman, 1987; Sui, 1993). 

To address these problems in a traditional suitability 
analysis, in this paper we developed a neural network ap- 

Average purity Number of factor maps 
of factor maps 2 4 6 8 10 
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Figure 2. Artificial neural network 
neuron (a is a threshold). 

proach. The learning algorithm of the neural network is a gen- 
etic one instead of the traditional backpropagation algorithm. 
Through evolutionary learning from samples, a neural net- 
work adapts its connection weights to approximate the desired 
output. Then in the recall phase, a successfully trained neural 
network can be used to accomplish the suitability analysis 
task. 

Introduction to Neural Networks and Genetic Algorithms 
Neural Networks 
The neural network model is derived from a simulation of 
the human brain. The basic computation unit in a neural 
network is a neuron. A neuron performs the simple weighted 
summation and nonlinear mapping (Figure 2), where wO is a 
threshold and f is usually a sigmoid function: i.e., 

A neural network has many neurons. The way neurons con- 
nect determines the structure of a neural network. A type of 
neural network called multilayer perceptron (MP), or feedfor- 
ward network, consists of a sequence of layers of neurons 
with full connections between successive layers. Two layers 
of MP have connections to the outside world: the i n ~ u t  and 
output layer. There are one or more hidden layers Getween 
the input and output layer. Information sequentially passes 
through the input, hidden, and output layers. A feedforward 
network with one or more hidden layers can form any shape 
of decision boundaries or approximate any continuous func- 
tion, given sufficient hidden neurons (De Viller et a]., 1992; 
Kreinovich et al., 1993). 

A neural network usually has two distinctive phases: 
learning and recall. Currently, the most popular learning al- 
gorithm for feedforward network is backpropagation (BP) [Ru- 
melhart, 1986). We will refer to a feedforward network using 
a BP learning algorithm as a BP network in this paper. With 
the BP algorithm, a set of training samples with the desired 
output is required. It is a procedure which iteratively adjusts 
the weights of the connections in  the gradient descent direc- 
tion so as to minimize a measure of the difference between 
the actual output vector of the network and the desired out- 
put vector. The difference is usually measured by the error 
function: 

where c is an index over cases (input-output pairs), j is an 
index over output units, y is the actual state of the output 
unit, and d is its desired state. The simplest version of gradi- 
ent descent is to change each weight by an amount propor- 
tional to the accumulated J E l h  i.e., 

where r)  is the learning rate. 
A neural network's generalization ability, or the power 

to handle unseen data, is crucial. The generalization ability 
can be measured by a set of testing samples in the recall 

phase. If a trained neural network generalizes well, it can be 
safely used to process the whole data set. BP networks have 
been successfully used for remote sensing image classifica- 
tions (Hepner et al., 1990; Benediktsson et al., 1990; Civco, 
1993) and GIS spatial analysis and modeling (Sui, 1993; Sui, 
1994; Wang, 1992; Fischer et al., 1994). As reported by Sui 
(1994), Openshaw empirically tested a feed-forward neural 
network as the basis for representing a spatial interaction 
model contained within the journey-to-work data. Sui (1993) 
successfully integrated a three-layer backpropagation neural 
network with GIS for a development suitability analysis and 
found that a neural network can make a close approximation 
of experts' decisions without the explicit expression of ex- 
perts' knowledge into "if-then" production rules. Wang 
(1992) used backpropagation neural networks to strengthen 
the spatial data modeling capabilities of GIs. Openshaw be- 
lieves that neural computing has the potential to revolution- 
ize many areas of urban and regional modeling by providing 
a general-purpose system modeling tool (Sui, 1994). Fischer 
and Gopal (1994) used a BP network for interregional tele- 
communication traffic analysis in Austria and found it out- 
performed the traditional regression approach. 

However, there are some commonly recognized draw- 
backs with a BP network. The following are some of them: 

Learning is slow. This is due to the local minima and flat 
areas on the "error surface," which trap the gradient-based BP 
or make it perform slowly. It is also very costly to compute 
the gradient in BP because it needs the information to pass 
through the network twice: samples pass through the network 
and then the error passes backward; 
BP is very sensitive to the initial connection weights and pa- 
rameters such as learning or momentum rates; and 
There is no model found in natural systems corresponding to 
the BP. It seems incompatible because neural networks are 
originally derived from simulating neural systems. 

Genetic Algorithms 
A genetic algorithm (GA) is a global search method simulating 
natural evolution (Holland, 1975; Goldberg, 1989). The evolu- 
tion begins with a group of randomly initialized feasible solu- 
tions, or chromosomes in GA terms. These chromosomes 
compete to reproduce offsprings based on the Darwinian prin- 
ciple of survival of the fittest. Hopefully, after a number of 
generations of evolutions, the chromosomes remaining in the 
group are the optimal solutions. 

A chromosome consists of a string of bits. There is a 
value of fitness associated with each chromosome. The objec- 
tive of GA is to maximize the fitness function. A mechanism 
in GA called selection operation gives more chance of repro- 
duction to the chromosomes with larger fitness. The selec- 
tion may be based on the actual value of fitness (e.g., roulette 
wheel selection) or on the order of fitness (e.g., rank selec- 
tion). The chromosomes reproduce offspring through two ba- 
sic genetic operations: mutation and crossover. Mutation is 
bit flipping. For example, the following child chromosome is 
derived by flipping the bold bit in parent chromosome to 
I .  

Parent: O 1 g 1 1 O O 1  Child: 01~11001 

Crossover divides two chromosomes at the same position 
and swaps portions as follows: 

Parent 1: 011 11001 Child 1: 011 0Oooo 

Parent 2: 111 00000 Child 2: 111 11001 

The general operation of GA is as follows: 

(I) A population of chromosomes is randomly initialized. 
(2) Each chromosome's fitness is evaluated. 
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Neural Network Chromosome 
Figure 3. Chromosome representation of a 
neural network (WO is a threshold). 

[3) A new population of chromosomes of the same size is gen- 
erated in the following way: 
(a) Through selection operation, the parent chromosomes 

are chosen from the current population. 
(b) Parent chromosomes reproduce children by means of 

mutation, crossover, or simple duplication. Which way 
of reproduction is stochastically determined by the pos- 
sibilities associated with them. 

(4) The old population is replaced with the new one. 
(5) If conditions of maximum of fitness or iterations are satis- 

fied, stop; otherwise, return to step (2). 

The global search ability of bit-representation genetic al- 
gorithm can be explained mathematically by Schemata Theo- 
rem. Genetic algorithms have been expanded to real numerical 
representation (Davis, 1991), where a chromosome is a string 
of real numbers. The crossover is the same as in bit string rep- 
resentation. The mutation is implemented as creeping, adding 
a small random number at a randomly selected position in the 
chromosome. The detailed discussion of the real numerical 
representation GA can be found in Qi and Palmieri (1994 a; 
1994b). 

In GA, successive populations of feasible solutions are 
generated in a stochastic manner and multiple solution tra- 
jectories proceed simultaneously, allowing interactions 
among them toward one or more regions of the search space 
(Qi et al., 1994a). This is in contrast to the gradient-descent 
based BP method that follows one trajectory along gradient 
descent. 

There are several advantages of using GA as the learning 
algorithm of a neural network: 

GA is not easily trapped in the local minima; 
The heavy burden of gradient computation of Bp is avoided, 
because no gradient information is needed in GA; 
There is no tedious work of selecting parameters such as 
learning or momentum rates in BP; and 
The learning process is internally parallel. 

To apply the GA to the learning problem of a neural net- 
work, two things need to be done: (1) selection of a fitness 
function, and (2) expression of a neural network in a chro- 
mosome form. Because GA is intended to maximize the fit- 
ness, we use -E, the negative of the error function (Equation 
2), as the fitness function. In most applications reported in 
the literature, fitness function is positive. However, what re- 
ally matters is the order of the fitness because we use the 
rank selection paradigm. In a feedforward network, each hid- 
den or output neuron with its accepting connections usually 
forms the "functional block," which is sensitive to certain 
features. The crossover tends to conserve the shorter frag- 
ment in a chromosome while destroying the longer one. To 
reduce the probability of the beneficial function block being 
destroyed by crossover, the weights of connections entering 
the same hidden or output neuron are placed together in the 
chromosome. Figure 3 illustrates how a neural network is 
represented by a chromosome, actually a string of real num- 
bers. 

There are often a number of different solutions to any 
one neural network (Montana et a]., 1989). This can make GA 

slow to evolve (Whitley et al., 1990). For example, assuming 
that to solve a problem three hidden neurons, each perform- 
ing task A, B, and C, are needed, then Figure 4 shows how 
an ill-functional neural network is reproduced by beneficial 
parents through crossover. To overcome this difficulty, it is 
suggested that a much higher level of mutation and a small 
population of chromosomes be used (Montana et al., 1989; 
Whitley et al., 1990; Dominic et al., 1991). 

We have developed a set of neural network and genetic 
algorithm routines using C+ +. To accomplish the suitability 
analysis task, a complete software system was developed, 
which has modules including image processing, annotation, 
statistics, training sample selection, neural network construc- 
tion and training, neural network database management, and 
data importlexport, among other functions. 

An Application of Genetic Learning Neural Network for 
Suitability Analysis 
We used an exercise in the IDRISI for Windows: Student Man- 
ual (Eastman, 1995) as an example. The problem is to find all 
areas suitable for the location of a light manufacturing plant. 
The manufacturing company is primarily concerned that the 
site chosen be on fairly level ground (less than 2.5 degrees). 
The local town officials are concerned that no facility be close 
to (within 250 metres) any reservoirs. Additionally, only for- 
ested land is to be considered. To summarize, the following 
three criteria must be satisfied (for simplicity, the minimum 
area constraint is ignored): 

on land with a slope less than 2.5 degrees; 
outside a 250-metre buffer around reservoirs; and 
on land currently designated as forest. 

Two maps available were a DEM (digital elevation map) 
and a land-use map, from which we could derive four maps 
using appropriate IDRISI functions. They are a continuous 
slope map (mslope, Figure 5a), a binary map showing the 
area where the slope is less than 2.5 degrees (b-slope, Figure 
5b), a binary map indicating outside the 250-metre buffers 
around reservoirs (b-dis, Figure 5c), and a binary forested 
area map (b-forest, Figure 5d). The larger slope is repre- 
sented by the lighter grey in Figure 5a. All these images have 
the size of 72 by 86 pixels. 

Using the OverlayIMultiply procedure within IDRIsI, the 

A C 

+ + 

4 + 

network 1 network 2 

Chromosome 1 Chromosome 2 

Crossover *+* 
+ ill-functional neural 

+ 

Figure 4. Problem caused by multiple solutions to a neu- 
ral network. To solve the problem, three hidden neurons, 
each performing task A, B, and C, are needed. This figure 
illustrates how an ill-functional neural network is pro- 
duced by two good neural networks through crossover op- 
eration. 

November 1996 PE&RS 



(a) m-slope (c) b-dis 

(d) b-forest (e) b-result (0 b-noise 
Figure 5. (a) Slope map (continuous). (b) Area where slope is less than 2.5 de- 
grees. (c) Area outside 250 meters of buffer around reservoirs. (d) Forest area. 
(e) Suitable area derived by overlay in IDRISI. (f) Randomly initialized map. 

resulting binary suitability map (bresult,  Figure 5e), is de- 
rived by multiplying b-slope, b-dis, and b-forest (Figures 
5b, 512, and 5d). Obviously, all these criteria are considered 
equally important. 

Five genetic learning artificial neural networks (GLANNS) 
were designed and tested. These neural networks had some 
common features. Because of the small size of our training 
samples, all the neural networks were small ones with only 
five hidden neurons. They had a single output neuron. Each 
network had several input neurons associated with the fac- 
tors. The output neuron produced numerical values ranging 
from 0 to 1. The function of the neural network was to pro- 
ject multiple dimension criteria space into one dimension 
evaluation space. For the parameters of the genetic algo- 
rithms, there were 35 chromosomes in the population, and 
the probabilities of mutation and crossover were 0.3 and 0.7, 
respectively (we also tried other settings of population size 
and genetic operation possibilities, and found that GA was 
not sensitive to these parameters). The entire data set was 
used as the testing set and processed by the trained neural 
network in the recall phase. The results were compared with 
that derived from the conventional overlay in IDRISI (Figure 
5e). Figure 6 illustrates the structures of these neural net- 
works and how they work to perform the suitability analysis. 
These experiments are presented individually with some dis- 
cussion. 

Experiment 1. GLANN Learns from the Explicit Overlay Rules 
The neural network had three input neurons (Figure 6a), as- 
sociated with b-slope, b-dis, and b-forest (Figures 5b, 5c, 
and 5d). The neural network was trained with the eight com- 
bination rules as follows: 
Input Expected Output Input Expected Output 

1 , 1 9 1  1 O , l , l  0 

In the recall phase, the neural network can produce ex- 
actly the same result as that derived using conventional pro- 
cedure in IDRISI (Figure 5e). The experiment shows that the 
traditional method of overlay or MCE could be replicated 
with a neural network. The rules for generating the suitabil- 
ity map are implicitly stored in the neural network as con- 
nection weights. Openshaw believes that, in both theory and 
practice, it is possible to develop neural networks equivalent 
to virtually all the existing spatial and non-spatial models for 
a wide range of applications (Sui, 1994). 

For the following four experiments, 29 sample sites were 
selected - 15 for unsuitable and 14 for suitable - with the 
aid of the slope map (Figure 5b), distance map (Figure 5c), 
forest map (Figure 5d), and the suitability map derived from 
IDNSI (Figure 5e). With these sites of known suitability, we 
could extract 29 training samples for each experiment from 
the relevant factor maps. 

Experiment 2. GLANN Learns from Samples 
The structure of the neural network was the same as the f is t  
neural network (Figure 6a). The 29 training samples were ex- 
tracted from b-slope, b-dis, and bforest (Figures 5b, 5c, 
and 5d). We had no preconceived notions about the decision 
rules this time. However, a neural network extracted these 
rules through learning from the samples and implicitly ex- 
pressing them in the form of connection weights. Learning 
from samples is one of the most prominent advantages of 
ANN over other static models. Some authors argue that the 
role of expert systems in socio-economic modeling will be 
limited because the static nature of the knowledge acquisi- 
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Frgure 6. Neural networks (NNS) performrng suitability analysis in recall phase. (a) Experi- 
ment 1 ( N N  trarned wrth the explic~t overlay rules) and 2 (trarned wtth samples). (b) Ex- 
periment 3 ( N N  automatically drscriminates factors relevant to the problem). (c) 
Experrment 4 ( N N  handles rnterdependency between factors). (d) Experrment 5 ( N N  deals 
wtth data from multiple measurement scales). 

tion process in expert systems cannot reflect the dynamics of 
complex spatial interaction (Sui, 1994). Through learning 
from samples, ANNs can adapt themselves to the dynamic 
change of the environment. 

Experiment 3. GLANN Automatically Discriminates the Criteria Relevant to the 
Problem 
The neural network had four input neurons (Figure 6b). The 
29 training samples were extracted from b-slope (Figure 5b), 
b-dis (Figure 5c), b-forest (Figure 5d), and a noise map (b- 
noise, Figure Sf). The pixels on this noise map are randomly 
set to the value of 1 or 0 at equal possibility. In the recall 
phase, the neural network also produced exactly the same re- 
sult as in Figure 5e. The irrelevant input (noise) did not af- 
fect the result. This shows that the neural network can 
automatically discriminate the relevant criteria to perform 
the task through evolutionary learning from samples. 

Experiment 4. GLANN Handles Interdependency between Factors 
The neural network had five input neurons (Figure 6c). In 
addition to b-slope (Figure 5b), b-dis (Figure 5c), b-forest 
(Figure 5d), two additional versions of the b-slope map were 
also used as redundant inputs. The 29 training samples were 

extracted from these five factor maps. The neural network 
also produced exactly the same result as in Figure 5e in the 
recall phase. The interdependent layers did not bias the re- 
sults. In theory, a neural network can accomplish any non- 
linear mapping, so it is possible to overcome 
interdependency among factors. 

Experiment 5. GLANN Deals with Data with Multiple Measurement Scales and 
Inaccuracy 
The neural network had three input neurons (Figure 6d). The 
29 training samples are extracted from the continuous slope 
map, b-dis, and b-forest (Figures 5a, 5c, and 5d). No nor- 
malization was performed for the slope data. The output of 
the trained neural network was a continuous evaluation map 
(Figure 7a). The histogram of this evaluation map is given in 
Figure 7b, where the horizontal coordinate represents the 
evaluation value and the vertical coordinate is the frequency 
of the pixels at that value. We can select a threshold along 
the horizontal axis to control the total area of suitability. In 
our system, this is done through adjusting a scroller under 
the histogram and examining the change of the resulting 
map. The suitability binary map was the same as the b r e -  
sult (Figure 5e) when the threshold ranges were approxi- 
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Figure 7. (a) Continuous evaluation map produced by neu- 
ral network in experiment 5 and its histogram (b), where 
the horizontal coordinate represents the evaluation value 
and the vertical coordinate is the frequency of the pixels 
at that value. After a threshold is applied, the result is 
the same as in Figure 5e. 

mately between 0.5 and 0.9 (Figure 7b). We selected 0.85 as 
the threshold. As mentioned before, a neural network can 
perform a projection from high dimensional criteria space 
into one dimension evaluation space, thereby facilitate the 
decision making process. 

Figure 8a shows the curve of suitability values derived 
from the neural network. It is created by calculating the out- 
put of the neural network when fixing the input of both neu- 
rons associated with b-dis and b-forest (Figure 6d) to a 
value of 1 and continuously changing the input of the neu- 
ron associated with the slope layer. We could see that the 
output of the neural network is reasonable and somewhat 
"fuzzy." With the increasing of the slope, the suitability 
value continuously decreases from 1 to 0. 

It is commonly recognized that slope data, like other 
spatial data, generally contain errors and inaccuracy. By sim- 
ply adding a random error of a uniform distribution ranging 
from -0.5 to 0.5 degree to the slope, we got a suitability 

curve for inaccurate slope as shown in Figure 8b using the 
same neural network. The inaccuracy in the measurement in- 
troduces some oscillation in the suitability value. Using the 
conventional overlay methods illustrated above, we also de- 
rived the suitability value curves for the perfect and noisy 
slope data shown in Figures 8c and 8d, respectively. Figure 
8d indicates that the inaccuracy in slope causes the high vi- 
bration of the suitability value in the neighborhood of 2.5 de- 
grees. From the above observations, we could conclude that 
the neural network is more tolerant to inaccuracy in data 
than traditional methods which involve the discretization of 
continuous data. The discretization of continuous data usu- 
ally imposes an oversimplification of the problem, and is 
somewhat subjective and rigid. For example, it is arguable 
that 2.49 degrees is fairly level but 2.51 is not. 

From this work, it can be seen that the neural network 
provides a promising approach to deal with the inaccuracy 
in geospatial data. If we can guarantee the accuracy of a 
small number of training samples, then the neural network 
may learn and generalize correctly and can be used to han- 
dle inaccurate or noisy data. 

Pereira and Duckstein (1993) used a value function to 
process the original continuous data, and the continuity of 
the data could be conserved. However, the value function 
needs careful design. With a neural network, the original 
data could be directly accepted. A neural network could con- 
duct an "implicit scaling" through learning from samples. 

About the User Interface 
Working with neural networks, the main task that the user 
needs to perform is to identify a set of samples (Figure 9). 
The selection of criteria need not be extremely refined. The 
neural network can automatically select the relevant factors 
to perform the task through evolutionary learning. It is per- 
missible that there may exist interdependency between some 
factors. All these features were illustrated in the experiments 
described previously in this paper. 

A prominent advantage of neural network approaches is 
that a user can focus on the problems themselves rather than 
on the details of the techniques. The user can utilize differ- 
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Figure 9. User interface of neural network a p  
proach for suitability analysis. 

ent factor maps, remote sensing images, in situ data, and 
other ancillary maps or nongraphical data such as text, tabu- 
lar, etc., and evaluate the sample sites using the expert 
knowledge, experience, intuition, creativity, and imagination. 

Overlay, MCE, and neural network approaches should all 
permit user loop back. With neural networks, when errors 
occur in the final result, the user can easily identify and cor- 
rect them. For example, in one experiment, we found the re- 
sulting suitable area derived from the neural network was 
the same as the area outside a buffer of 250 metres around 
the reservoirs (Figure 5c). A visual examination of the train- 
ing samples showed that all the suitable samples were out- 
side the buffer and all the unsuitable samples were within. It 
is understandable that the neural network generalized incor- 
rectly. This error was corrected by adding several unsuitable 
points outside the buffer and training the neural network 
again. 

With the traditional methods, we can begin to work only 
after we have acquired complete and explicit knowledge 
while, with neural networks, we can refine our results pro- 
gressively by improving the quality of the training samples. 
If we have any new evidence about the suitability of a site, 
we could add it to the training samples. If we find an error 
in a training sample, we could remove or edit it. Then we 
need merely to retrain the neural network. So neural net- 
work methods are dynamic and compatible with the human 
cognitive process. 

Problems with Neural Networks 
The neural network has its own problems. The optimal 
structure of the neural network, i.e., how many hidden lay- 
ers and how many neurons in each hidden layer, is still un- 
clear for the specific task. Some general principles available 
for designing the structure are mainly based on experience. 
For example, De Villiers e t  al. (1992) suggest that a neural 
network with one hidden layer may be more preferable than 
one with two hidden layers in terms of learning speed and 
performance. One of the rules to estimate the number of hid- 
den neurons is the geometric pyramid rule proposed by Mas- 
ters (Wang, 1995). Genetic algorithms are also a promising 
approach to optimize the structure of neural networks. Some 
pioneering work has been done in this field (Whitley et al., 
1990; Koza et al., 1991). 

Another problem is "overfitting," which corresponds to 
some extent with the structural problem. When "overfitting" 
occurs, a neural network learns well from the training sam- 
ples but performs poorly for unseen data. One method to 
overcome this problem is to use the fewest hidden neurons 
as possible to guarantee the most conservative generalization. 
A technique used by Fischer and Gopal (1994) to detect 
when overfitting occurs is called cross-validating. In their 
methods, a validation test set is used for the evaluation of 

the learning process in addition to the training and testing 
samples. 

These problems did not surface in our experiments be- 
cause of the simplicity of the problem. However, caution 
must be taken when applying neural network to larger, more 
complicated real world tasks. 

Conclusions 
Traditional methods of overlay and multicritera evaluation 
can be replicated or even replaced by genetic learning neural 
networks. Many difficulties in them are overcome by the ev- 
olutionary learning and nonlinear mapping ability of the 
neural network. A genetic learning neural network can pro- 
cess data of multiple measurement scales, continuous or dis- 
crete, and produce a somewhat fuzzy rather than rigid result. 
It provides a promising approach in that, if we can guarantee 
the accuracy of a small number of training samples, then the 
neural network may learn and generalize correctly and can 
handle inaccurate or noisy data. The selection of criteria 
need not be extremely refined because the neural network 
can automatically discriminate the factors relevant to the 
problem through learning. It is permissible that there may 
exist interdependency between factors. Much of the tedious 
work in traditional suitability analysis, i.e., the requirements 
of explicit knowledge to identify criteria, assign scores, de- 
termine criteria preference, and select an aggregation func- 
tion are replaced by the evolutionary learning. 

With a neural network, the user can focus on the prob- 
lems themselves rather than the details of techniques. The 
main task of the user is to define a set of training samples for 
which a measurement of suitability is known. The user can 
utilize expert knowledge, experience, and creativity to evalu- 
ate the sample sites with the aid of related factor maps, re- 
mote sensing images, in situ data, other ancillary maps, or 
nongraphical data. Any of the traditional methods can also 
be used to evaluate the training samples. Compared with the 
traditional overlay and multicriteria evaluation methods, the 
neural network approach is more amenable to user feedback. 

Although neural networks have structural and overfitting 
problems, they can provide an alternative for and improve- 
ment over traditional methods for suitability analysis in GIS. 
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