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Abstract 
A Bayesian modeling technique was used to predict probabil- 
i ty  of occurrence for 14 species of Maine land birds. The re- 
lationships between bird species survey data and the spectral 
values of Landsat Thematic Mapper bands 4 and 5 as well 
as a derived texture measure were used to build conditional 
probabilities for input into Bayes' Theorem. The conditional 
probabilities form decision rules for reclassifying the input 
spectral data into probability of occurrence estimates with 
associated estimates of error inherent in  the model predic- 
tion. This methodology removed the costly and time-consum- 
ing step of creating a habitat map before modeling species 
occurrence. The output resolution of the species predictions 
is not degraded from the original 30-m TM pixel size to the 
coarse resolution of the wildlife survey data. Model results 
can be compared to results from other habitat modeling 
techniques and used by natural resource managers to predict 
the effects of land-use changes on available habitat. 

Introduction 
Determining the habitats used by different species is an im- 
portant first step in managing those habitats to sustain wild- 
life populations. Modeling the habitat requirements of wild- 
life species allows wildlife managers to predict the distribu- 
tion or abundance of target wildlife species (Morrison et al., 
1992). Such models can take many forms, but all attempt to 
represent formally, through equations or decision rules, the 
relationships between species and their habitat. 

Spatially explicit relationships between wildlife species 
and their habitat can be systematically tested within a geo- 
graphic information system (GIS) (e.g., Lyon, 1983; Lyon et 
al., 1987; Ormsby and Lunetta, 1987; Shaw and Atkinson, 
1988; Pereira and Itami, 1991; Homer et al., 1993; Herr and 
Queen, 1993; Rickers. et al., 1995). To predict species occur- 
rence in a spatially explicit manner, species-habitat models 
require a habitat map (e.g., Palmeirim 1988). Land-cover/ 
land-use (LCLU) maps are converted into habitat-type maps 
according to known species-habitat associations. Because 
LCLU classification schemes generally are not developed with 
the habitat requirements of specific wildlife species in mind, 
accurate relationships between LCLU classes and habitat 
types may not exist. Errors in the aggregation of habitat types 
that a species use and do not use or use at different rates 
will lead to errors in model output. 

Additionally, the accuracy of LCLU maps is often un- 

Maine Image Analysis Laboratory, Department of Forest Man- 
agement, 5755 Nutting Hall, University of Maine, Orono, ME 
04469-5755 (jeff@falcon.umenfa.maine.edu). 

tested, leading to the introduction of errors of unknown mag- 
nitude into habitat maps. An accuracy assessment of the 
LCLU map would provide a confusion matrix to allow for er- 
ror simulation. Because accuracy assessment of LCLU classifi- 
cations is time consuming and costly, a method that could 
remove the LCLU classification step entirely would be useful 
for spatial modeling of species occurrence. 

Bayesian Modeling 
Bayesian statistics constitute an alternative method for build- 
ing predictive relationships between species and their envi- 
ronment. Several studies have used Bayesian statistics to 
predict one variable based on its statistical relationship to 
other variables (Tucker et al., 1997; Aspinall and Veitch, 
1993; Aspinall, 1991; Bonham-Carter et al., 1988; Bonham- 
Carter et al., 1989). Further modifications of the modeled 
variable based on repeated comparisons with predictor varia- 
bles yields a probability map and associated errors for each 
location on the landscape under study. 

Bayes' Theorem uses a priori (subjective) and condi- 
tional probabilities to calculate the probability of an uncer- 
tain event occurring. A priori probabilities represent what 
the modeler believes, before testing, to be the probability of 
an event occurring. Conditional probabilities are probabilities 
that other events occur in conjunction with the original 
event. If species occur at a rate of 0.5 on the landscape, but 
occur 80 percent of the time when a closed canopy forest is 
present, the conditional probability of species presence for 
closed canopy forests is 0.80. 

Aspinall (1991) used classes of land cover derived from 
classified satellite imagery, altitude, and accumulated frost to 
model habitat availability for red deer (Cervus elaphus) in a 
region of Scotland. Aspinall and Veitch (1993) simplified the 
procedure by removing the classification of satellite imagery, 
instead using unclassified satellite imagery. They created a 
probability of occurrence map for the Curlew (Numenius ar- 
quata) using grouped raw digital numbers (reflectance) from 
selected wavebands of satellite imagery along with a digital 
elevation model and species presencelabsence data. Curlew 
survey data with coarse resolution (1-krn2 survey blocks) 
were used to classify the fine resolution (30-mZ) satellite im- 
age based on repeated comparisons of image pixels where 
Curlew were observed against image pixels where Curlew 
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were not observed. The output was a probability-of-occur- 
rence map that is similar to habitat-suitability or habitat-ca- 
pability maps, but based on probability rules. Additionally, 
measures of error for the probability estimates were readily 
obtained through multiple model iterations and were in- 
cluded in model results. This method used the full resolu- 
tion of the satellite imagery to enhance the coarse resolution 
of the Curlew survey data. 

Proposed Method and Modeling Approach 
We investigated whether the presence of Maine land birds 
can be predicted directly from unclassified satellite imagery 
and derived layers. The objectives of our study were (1) to 
determine if relationships exist between the raw waveband 
reflectance from satellite imagery and the presence and ab- 
sence of bird species, (2) to use those relationships that were 
significant and Bayesian statistics to model potential habitat 
occupancy for selected land bird species breeding in Maine, 
and (3) to report on the variability of model input and out- 
put and on the significance of model output. 

We used 1991 Thematic Mapper satellite imagery for 
Maine coupled with 1990 Breeding Bird Survey (BBS) data to 
predict probability of occurrence for land bird species. Birds 
were selected for this study because of the availability of a 
landscape-level database (BBS data) and the recent concern 
over the status of many land bird species (Terborgh, 1989; 
DeGraaf and Rappole, 1995: Martin and Finch, 1995). We 
used Bayes' Theorem to formalize the relationship between 
species presence and reflectance values of the satellite im- 
agery. Bayes' Theorem modifies a priori probabilities of an 
uncertain event occurring according to the conditional proba- 
bilities of related themes. For our study, the frequency of as- 
sociation between the presence (or absence) of a species and 
the presence (or absence) of a particular reflectance value or 
digital number (DN) from the satellite imagery formed the 
conditional probabilities used in Bayes' Theorem. The output 
of Bayes' theorem is the a posteriori probability of species 
occurrence for each pixel present in the input themes. The 
output, therefore, has the same spatial resolution as the input 
theme with the highest resolution and is not degraded to the 
lowest resolution data. Our modeling procedure allowed for 
testing of model input variability and significance and of 
model output variability and significance. Standard error 
propagation methods (Burrough, 1986) were used to calculate 
variability in model output. Our approach removed the inter- 
mediate steps of creating land-coverlland-use maps and as- 
signing habitat types, thereby removing the errors inherent in 
those steps and the time and expense involved in creating a 
credible land-coverlland-use map. 

Our methodology, although similar to that employed by 
Aspinall and Veitch (1993), differed in several significant 
ways. First, the landscape of Maine is a much more heteroge- 
neous landscape than the moorland and grassland study area 
of Aspinall and Veitch. We included a spatial texture mea- 
sure in our analysis to determine if species were correlated 
with heterogeneity of the landscape. Second, the large area 
of Maine (approximately 85,000 km2) allowed us to use the 
conditional probabilities of individual digital numbers from 
each data theme rather than grouping the reflectance values 
of the satellite imagery as Aspinall and Veitch did for their 
small study area (1500 km2). Our increased spectral resolu- 
tion provided for more precise correlations to be made be- 
tween species presence or absence and each data theme. 
Finally, our study focused on all land bird species with suffi- 
cient survey data rather than a single species. 

Study Area 
Maine is located in a transition zone between northern hard- 
woods in the south and boreal conifer forests to the north. 

Steep environmental gradients result in many species of 
plants and animals reaching their northern or southern range 
limits in the state (McMahon, 1990; Boone, 1996). Large por- 
tions of northern Maine forests are in industrial forest owner- 
ship and managed primarily for pulpwood production. 
Seymour (1994) described the characteristics of northeastern 
U.S. forests and the silvicultural systems used in this region. 

Maine Land Birds 
Approximately 150 species of land birds have been docu- 
mented as breeding regularly in Maine (Boone, 1996; Gawler 
et al., 1996). The abundance and life history characteristics 
of Maine's land birds may help to determine which species 
will be modeled successfully using the approach we have 
outlined. Habitat generalists, rare species, and species poorly 
sampled by the BBS (e.g., raptors, nocturnal birds, seabirds, 
shorebirds) are not expected to provide clear relationships 
between species presence and satellite-derived data themes. 
Bird species that may be modeled successfully using this ap- 
proach include common species that are relatively special- 
ized in their habitat requirements. 

Breeding Bird Survey 
The Breeding Bird Survey (BBS), initiated in 1966, gathers 
data on breeding birds in North America through annual 
~oadside point counts. Survey points (stops) are every 0.8 km 
along 39.4-km routes for a total of 50 data points for each 
route. All birds seen or heard within a 0.4-km radius during 
three minutes are recorded. Approximately 50 routes are lo- 
cated in Maine, of which roughly 40 are run each year. Each 
survey route is run during the peak of the breeding season, 
with certain guidelines for time of day and weather condi- 
tions intended to reduce biases in the data (Robbins et al., 
1986; Peterjohn and Sauer, 1993; Droege, 1990). 

BBS stop-level data for 1990 were obtained in digital for- 
mat. Unique records for each route-stop combination in- 
cluded each species American Ornithologist Union (AOU) 
number and the number of individuals observed. BBS routes 
were digitized from route maps obtained horn the Patuxent 
Wildlife Research Center. Digital Line Graph (DLG) files for 
the state transportation network were used to identify the 
roads in BBS routes and stop locations were added every 0.8 
km along each route. ~hirty-eight routes were run in 1990 
from which eight were removed from the modeling proce- 
dure because of problems associated with the recording of 
data on those routes. BBS stops for those 30 routes were indi- 
vidually buffered at a radius of 0.4 km according to the es- 
tablished guidelines for BBs surveys for recording all species 
seen or heard within 0.4 km of a stop location (Figure 1:l). 

Landsat Thematic Mapper 
A 1991 three-band Landsat Thematic Mapper (TM) statewide 
image mosaic of Maine was available from the Maine Image 
Analysis Laboratory at the University of Maine. Bands 3 (re- 
flected red), 4 (near-IR), and 5 (mid-IR) are well suited for 
vegetation discrimination (Horler and Ahern, 1986). Several 
data themes were derived from the three available TM bands. 
A Normalized Difference Vegetation Index (NDVI) was calcu- 
lated from the normalized ratio of band 3 to band 4, and pro- 
vided the greatest range of differences between vegetation 
and non-vegetation in green biomass. NDVI images are often 
used for land-coverlland-use mapping and change detection 
(Tucker et al., 1985; Sader and Winne, 1992; Sader, 1995). 
Measurements of the spatial texture of imagery can be calcu- 
lated from an NDVI image and are useful in determining land- 
scape-level heterogeneity of vegetation (Cohen, 1994). Two 
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Figure 1. Flow chart of the modeling approach. Numbers 1 to 15 relate to the se- 
quence of processing steps described in the text. 

spatial texture measures were calculated from the NDVI image 
(ERDAS, 1994): 

7- by 7-pixel window, variance 

V = Sum (x, - m)2 l (n - 1) 

7- by 7-pixel window, skewness 

S = I Sum (x, - m)3 I / (n - l)V3I2 

where 
x ,  = DN value of pixel,,,, 
n = number of pixels in analysis window (7 by 7 pixels), 
m = mean of pixels in analysis window, and 
V = variance of pixels in analysis window (as calculated 

in Equation 1). 
Pixel vales for each theme within the 0.4-krn radius buffer for 
each BBS stop were appended to a database file (Figure 1:2-3) 

We used a power analysis as a diagnostic tool for deter- 

mining, a priori, which species were most likely to be 
modeled successfully and which data themes to use for each 
species (Steidl et al., 1997). The power analysis compared 
species-specific differences between the average digital num- 
ber (DN) value for species presence and the average DN value 
for all BBS stops surveyed in 1990 (Figure 1:4). For each data 
theme, spectral reflectance values within a 0.4-km radius of 
BBS survey points (stops) were compared to determine if the 
effect size was large enough to detect a difference given an 
alpha level of 0.05, and sample sizes relating to the number 
of stops a particular species was observed at and the total 
number of stops surveyed. If the calculated power was above 
0.70 (a conservative value) in at least two data themes, the 
species was selected for the inductive modeling procedure. 

Bayes' Theorem 
Bayes' Theorem has four parts: a priori probabilities of pres- 
ence and absence and conditional probabilities of presence 



and absence (Equation 3). For analysis based on conditional 
probabilities from multiple themes, each conditional proba- 
bility for presence or absence is multiplied together as input 
into the theorem. In our study, a priori probabilities were the 
probabilities that a specific species would or would not oc- 
cur at a site. Our conditional probabilities were based on the 
associations between the presence or absence of each DN in 
relation to the presence or absence of a species. For our anal- 
ysis, Bayes' Theorem took the form: 

where 
Sp = Subjective (a priori) probability of species presence, 
So = Subjective (a priori) probability of species absence, 
P,,,, = Product of the conditional probabilities of spe- 

cies presence for DN 'x' for each theme, 
A,,, = Product of the conditional probabilities of spe- 

cies absence for DN 'x' for each theme, and 
P, = a posteriori probability of species presence. 

Subjective Probabilities 
We considered two methods to calculate a priori species 
presence: (1) dividing the number of stops a species was ob- 
served on by the total number of stops surveyed in 1990 or 
(2) assuming an equal probability for species presence and 
absence (Aspinall, 1991). The first method has the disadvan- 
tage of potentially severely underestimating the actual proba- 
bility of species occurrence because of the brief snapshot in 
time the ~ B S  survey design represents. For exampler a spe- 
cies may be observed at 200 of the 1500 surveyed in 1990, 
yielding an a priori probability of species presence of 0.133. 
The actual probability of species presence will likely be 
higher than 0.133 because the BBS only records those species 
heard or seen in a single %minute point count. 

The second method is potentially a closer approximation 
of the probability of actual species presence and absence and 
provides more tractable results: output probability of occur- 
rence values greater than 0.5 are assumed to predict species 
presence because the conditional probabilities of the theme 
attributes increased the a posteriori probability estimate up 
from the a priori probability of presence; values less than 0.5 
predict absence. We used conditional probabilities of 0.5 for 
a priori species presence and absence in our models. 

Conditional Probabilities 
We calculated conditional probability of species presence 
and absence for each DN for each theme. Conditional proba- 
bility of species presence for DN 'x' was the proportion of 
stops where species 'y' was observed that contained DN 'x' 
(Figure 15). Conditional probability of species absence was 
based on the frequency of occurrence of each DN for all 
routes surveyed in 1990 and within a species range, as de- 
fined by those routes where a species had been observed at 
least once during the history of the B B ~  (Figure 1:6). For ex- 
ample, if a species was observed on 100 stops of the 1500 
stops surveyed within that species' range, and DN 32 was ob- 
served 90 of the 100 presence stops and 1000 of the 1500 
stops surveyed, then DN 32's conditional probability of pres- 
ence is 90/100 = 0.90 and conditional probability of absence 
is 1000/1500 = 0.67. 

We calculated both the mean and variance of the condi- 
tional probability for each DN for species presence. These 
conditional probabilities were based on 100 iterations of 90 
percent random subsets of stops where a species was ob- 
served in 1990. We calculated conditional probability for 
species absence based on 100 iterations of 10 percent ran- 

dom subsets of all stops surveyed with a species range to 
equalize sample size between presence and absence subsets. 

Bayes' Theorem assumes that observed relative frequen- 
cies of occurrence are adequate measures of conditional 
probabilities. This assumption is generally met when sample 
sizes are large. Small sample size leads to imprecise proba- 
bility values that may not adequately represent the probabil- 
ity of an event occurring (Gelman et al., 1995). To maximize 
our potential for successful modeling of species presence and 
absence, we limited our analysis to those species observed at 
60 or more stops, and with power values higher than 0.70 in 
at least two data themes. The selection of 60 stops and a 
power of 0.70 in two or more themes was arbitrary, but con- 
sidered conservative in limiting modeling to the most likely 
species to show clear relationships with the available data. 

Testing the Significance of Each Theme Value 
For those species that met the selection criteria listed above, 
we tested for significant differences between conditional 
probability of presence and absence for individual DN values 
for each theme using a 2 by 2 contingency table analysis (As- 
pinall and Veitch, 1993; Aspinall, 1991). We used the origi- 
nal count data (i.e., the number of species presence stops 
where DN 'x' occurred) for DN presence and absence against 
species presence and absence (Figure 1: 8). The conditional 
probability of DN values that were significantly different were 
selected as input into Bayes' Theorem. Non-significant DN 
values were assigned 1.0 for both presence and absence, 
eliminating them and the variability they represented from 
inclusion in the model. The overall significance of each 
theme was determined from the proportion of DN values that 
were significantly different between species presence and 
random frequencies generated from 100 iterations of 100 ran- 
dom stops. 

Applying Bayes' Theorem 
Each element of Bayes' Theorem was input into the formula 
on a pixel-by-pixel basis. The conditional probabilities calcu- 
lated in the previous steps represented decision rules in the 
form of reclass tables that were used to recode the input 
data's DN values into conditional probabilities (Figure 1:9- 
11). An ARCIINFO (ESRI, 1995) grid represented each data 
theme. Grid algebra, reclass tables for conditional probability 
values, and ARC macro language (AML) were used to create 
predicted probability of occurrence output for each species. 

Testing Model Output 
Model output was evaluated in three ways. First, the per- 
centage of the state that was not modified by Bayes Theorem 
was calculated (Figure 1:12). These areas indicated a non-sig- 
nificant difference in conditional probabilities for all data 
themes used in the model building. Species with no model 
prediction for more than 55 percent of Maine were consid- 
ered to have been modeled unsuccessfully. Second, the stan- 
dard deviation of the model output was calculated by pro- 
pagating the variability of the input conditional probabilities 
through Bayes' Theorem (Figure 1:13) as discussed in Bur- 
rough (1986). Burrough provides standard procedures for cal- 
culating the aggregate variability of model output based on 
the variability of the input and the types of mathematical op- 
erations performed. The number of input themes used for 
each species determined how many operations and, there- 
fore, which derivation of the error propagation equation was 
used. Estimates of standard deviation propagated through the 
modeling process were grouped into six levels. 

Finally, model output for each species was tested against 
model input. Model predictions for the overall area of stop 
locations where a species was observed in 1990 (0.4-krn ra- 
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TABLE 1. PERCENTAGES OF DN VALUES I N  EACH DATA THEME WITH 
SIGNIFICANTLY DIFFERENT CONDITIONAL PROBABILITIES FOR SPECIES PRESENCE AND 

ABSENCE ACCORDING TO A 2 BY 2 CONTINGENCY TABLE ANALYSIS. 

Data Theme 

TM TM Variance 
Species Band 4 Band 5 Texture 

Eastern Phoebe 24.7 17.1 
Bobolink 23.2 31.6 
Red-winged Blackbird 35.3 44.6 43.0 
House Finch 14.2 11.4 38.5 
American Goldfinch 22.1 18.7 36.0 
Savannah Sparrow 11.1 26.9 
Song Sparrow 21.1 31.6 46.5 
Nashville Warbler 23.2 22.3 
Northern Parula 31.6 35.2 
Yellow Warbler 7.4 16.6 29.5 
Black-throated Green Warbler 44.6 45.0 
Gray Catbird 14.7 14.5 
Winter Wren 36.3 40.4 48.5 
Red-breasted Nuthatch 31.1 19.7 

dius buffer) were compared by the percentage of predicted 
species presence, absence, and no prediction (not modified). 

Results 
Thirty-eight of 54 Maine BBS routes were surveyed in 1990. 
Thematic Mapper bands 4 and 5 and the variance texture 
theme derived from an NDVI image were used in model 
building. Haze contamination in TM band 3 eliminated it 
from consideration. Differences in DN frequencies of associa- 
tion for bird species presence and absence for the NDvI and 
skewness texture themes were minimal, resulting in low 
power and removal of these themes from inclusion in the 
modeling phase. 

Of the 151 species observed in 1990, 52 were observed 
at enough stops (> 60) to potentially provide enough data to 
build conditional probabilities that adequately represented 
the probability of certain DN values being associated with 
species presence and absence. Of these 52, only 23 had 
power greater than 0.70 in two or more of the data themes 
used and only 14 of these species had what we felt were sat- 
isfactory results. The remaining species models had large ar- 
eas of the state (> 55 percent) that were not modified from a 
priori probabilities and were, therefore, considered not to 
have been modeled successfully. 

Testing Model Input 
The proportions of DN values for each data theme-species 
combination that were determined to be significant by the 2 
by 2 contingency table analysis are listed in Table 1. Higher 
percentages indicate that more DN values had significantly 
different conditional probability values for species presence 
and absence. 

Testing Model Output 
Table 2 summarizes predicted species presence, absence, or 
no prediction as percentages of Maine's land area. Table 2 
also includes major habitat types used by each species, 
themes used in the analysis, number of BBs stops each spe- 
cies was observed on in 1990, and relative magnitude of var- 
iability of the model predictions. 

Model output predictions for those areas where a species 
was observed in 1990 are presented in Table 3 as propor- 
tions of the area that the model predicts species presence, 
absence, and no prediction. Presumably, species models 
should predict species presence for a majority of the area 
where the species occurred in 1990. 

Discussion 
Fourteen of the 23 species modeled had satisfactory results. 
The summary results (Table 2) indicate several general 
trends in those species that we were able to model success- 
fully. All 14 species successfully modeled can be considered 
habitat generalists within the general habitat categories of 
forest, grassland-open, aquatic, and suburban/residential. 
These habitat categories, although broad, are discrete and 
very different structurally. Common species using habitats 
indiscriminately, such as crows, did not have clear relation- 
ships between species presence and our available data 
themes. This result was expected given our methodology. 

No connection existed between the percentage of signifi- 
cant DN conditional probabilities (Table I), the number of 
themes used as model input, and the percentage of unmodi- 
fied areas in model output (Table 2). We had expected that 
models with higher percentages of significant DN conditional 
probabilities would have overall lower percentages of un- 
modified areas in the model output. This unexpected result 
may be due to the spatial relationship of the DN values that 
were significant in each theme. If all significant DN values 
were at the same spatial location in each theme, the percent- 
age of the state that was modified by the model would be 
lower than if the significant DN values from each theme did 

TABLE 2. SUMMARY TABLE SHOWING SPECIES MODEL PREDICTIONS AS A PERCENTAGE OF MAINE'S LANDSCAPE, HABITAT TYPES EACH SPECIES IS PRIMARILY ASSOCIATED 
WITH, DATA THEMES USED IN BUILDING EACH MODEL, AND THE NUMBER OF BBS STOPS EACH SPECIES WAS OBSERVED AT IN 1990. 

- - 

Prediction Statewide (%) 
Std. 

Species Name Absence N.Mod. Presence Habitat Theme # Stops Level 

American Goldfinch 5.4 42.5 52.1 S 4,5, v 83 3 
Song Sparrow 14.3 39.7 46.0 S 4,5, v 361 3 
Eastern Phoebe 6.3 48.4 45.3 F 4,5 127 4 
Gray Catbird 9.9 51.2 38.9 S 4,5 178 2 
Winter Wren 60.0 14.6 25.4 F 4,5, v 212 1 
Savannah Sparrow 47.0 42.1 10.9 GI A 4,5 88 6 
Northern Parula 45.9 23.6 30.6 F 4,5 169 3 
Nashville Warbler 40.1 26.6 33.3 F 4,5 131 4 
Black-throated Gr. Warbler 39.6 38.1 22.2 F 5, V 95 3 
Red-breasted Nuthatch 39.0 38.4 22.6 F 4,5 77 6 
Yellow Warbler 34.2 52.0 13.8 S 4,5, v 187 3 
House Finch 30.1 44.8 25.0 R 4,5, v 160 3 
Bobolink 27.8 39.6 32.6 G 4,5 112 5 
Red-winged Black Bird 22.9 54.3 22.8 A 5, V 145 4 

(N.Mod. = not modifiedlno prediction; Habitat: S = shrub open; F = forest generalist; R = suburbanlresidential; G = grassland-open; A = 
aquatic; Them.: 4 = TM Band 4; 5 = TM Band 5; V = variance texture; Std. (standard deviation) Level: 1 = low; 6 = high) 
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not align spatially. Species with higher percentages of signifi- 
cant DN conditional probabilities did, as expected, have rela- 
tively lower values for the error standard deviation (Table 2). 

The inclusion of spatial texture measures proved useful 
in this study. Seven of the successful models included data 
from the theme for variance texture. This theme measured 
the spatial heterogeneity of the area surrounding each B B ~  
stop at a scale of 4.4 hectares (7- by 7-pixel analysis win- 
dow). High variance texture measures indicated high vari- 
ability in the amount of vegetation and, therefore, variable 
habitat types. Six of the seven species models using the vari- 
ance texture theme had positive correlations with that theme. 
These six species are associated with mixed habitat types 
such as forest edge, suburban yards, brushy undergrowth, or 
abandoned farmland. The spatial heterogeneity of these envi- 
ronments is high as reflected in large texture values. Black- 
throated Green Warblers were the only species modeled that 
are primarily associated with mature forests and the only 
species modeled that had a significant negative correlation 
with the variance texture theme. Maps of the distribution of 
predicted species presence and absence and the propagated 
variabilitv of those estimates provide for a visual interpreta- 
tion of model results. m lack-boated Green Warblers &e pre- 
dicted in areas of the state that are dominated by larger tracts 
of mature softwood or mixed softwood-hardwood forest, as 
expected by the habitat preferences of the species. 

Model predictions for where species were observed in 
1990 (Table 3) consistently (13 of 14 species) contained a 
higher percentage by area (2.7 to 46.5 percent) of predicted 
presence pixels than in the statewide results (Table 2), indi- 
cating model results were correctly predicting species pres- 
ence for those test areas. Model results for these areas also 
contained consistently lower predicted species absence than 
present in statewide results. 

Although our model predicts only presence or absence, 
it is possible to infer relative abundance of a species accord- 
ing to the prevalence of presence pixels in a region. Regions 
with concentrations of pixels that indicate species presence 
are equivalent to a prediction of higher abundance for a spe- 
cies than an area with few presence pixels interspersed with 
absence pixels. 

Because we evaluated each DN value separately (rather 
than grouping into several levels) in each theme and elimi- 
nated non-significant DN values from input into Bayes' Theo- 
rem, each data theme on its own contained numerous pixels 
that were non-significant. Using the power analysis discussed 
above to eliminate those species-theme combinations that 
were unlikely to have significant relationships reduced the 
number of analyses required. 

Errors in BBS route stop location may have biased our re- 
sults. The iterative approach we used to build the correla- 
tions between the BBS data and the satellite imagery will 
minimize problems associated with determining the exact lo- 
cation of BBS stops. Each 0.4-km buffer (all species within 
this radius are recorded during the BBS) around each stop 
contains 550, 30-mZ pixels. A deviation of one tenth of a 
mile in stop placement would result in a 50 percent change 
in the pixels comprising the 0.4-km buffer around each stop. 
Although a deviation in stop location of a tenth of a mile is 
allowed when running a BBS route, such a deviation would 
not be systematically biased in any one direction. 

Conclusions 
Our study determined that relationships exist between the 
unclassified satellite imagery and species presence for 14 of 
23 species tested. Furthermore, we were able to use those re- 
lationships, in the form of conditional probabilities, to model 
the probability of occurrence for 14 land birds in Maine. Our 
modeling procedure also provided measures of variability in 

Percentage 

No 
Species Name Absence Prediction Presence 

Eastern Phoebe 2.6 29.3 68.1 
Bobolink 12.3 38.1 49.6 
Red-winged Blackbird 7.4 42.2 50.4 
House Finch 8.8 39.2 52.0 
American Goldfinch 0.8 17.2 82.0 
Savannah Sparrow 22.3 49.5 28.2 
Song Sparrow 3.9 20.3 75.8 
Nashville Warbler 28.5 29.7 41.8 
Northern Parula 31.9 25.0 43.1 
Yellow Warbler 4.5 35.2 60.3 
Black-throated Green Warbler 35.7 43.0 21.3 
Gray Catbird 3.7 41.8 54.5 
Winter Wren 51.7 18.5 29.8 
Red-breasted Nuthatch 32.9 41.8 25.3 

model input, the modeling procedure itself, and model out- 
put. Variability in the input data guided model building to 
those DN values that had the greatest difference in condi- 
tional probabilities for species presence and absence. Meas- 
ures of variability in model output were useful in deter- 
mining the reliability of predicted species presence and ab- 
sence. 

Although only 14 species were successfully modeled in 
this study, successful modeling of other species, especially 
less common habitat specialists, might be possible using 
multiple years of BBS data surrounding the acquisition dates 
of satellite imagery. Because we found only 23 species of 59 
had measurable relationships to the Thematic Mapper bands 
and derived layers we used, it is likely that other layers TM 
bands or other derived layers might provide a better correlate 
to environmental variables important to bird species. Inclu- 
sion of other data themes might increase the numbers of spe- 
cies that could be successfully modeled. 

The results from this study indicate that our Bayesian 
modeling technique shows promise for providing landscape- 
level habitat assessments for some land birds in Maine. The 
technique used in this study provides a potentially faster and 
less expensive approach to predicting species presence and 
absence than those techniques requiring new LCLU maps. The 
spatially explicit results produced by our method and the 
fine spatial resolution of the data used to model these spe- 
cies and the resulting high resolution of model predictions 
makes this methodology an attractive alternative to more 
generalized methods. The methodology also represents a fea- 
sible method to test for the effects of differing spatial scales 
of heterogeneity and area effects. 

Comparisons of our results to results using this method- 
ology with habitat maps as model input or other methods us- 
ing habitat maps would provide a better understanding of the 
problems with our analysis. Such a study is currently under- 
way with results anticipated this fall. Future studies, espe- 
cially in areas of large physiographic relief, could include 
other data themes such as slope, aspect, and elevation, 
which are commonly used as ancillary data to improve LCLU 
classifications of satellite imagery and, therefore, improve the 
predictive ability of the Bayesian models. 
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Members insured in the ASPRS Life Insurance Plan as of 
March 31, 1997 will receive a credit of 40 percent of their 
semiannual premium due on the October 1, 1997 renewal. 
This marks the 33rd time since the inception of the Program 
that premium credits have been granted by the Life Insurance 
Trust. These credits have effectively lowered member's annual 
premiums by an average of 20 percent over the last 5 years, 
thus reducing the cost of coverage for eligible insured menl- 
bers and their families. 

Because of the Plan's excellent experience, the carrier has 
also agreed to two valuable enhancements for the ASPRS Term 

Life Plan. New York Life has implemented an increase in 
maximum benefit for members and spouses (except in  Texas) 
from the current $300,000 to $600,000. In Texas, the maximum 
spouse benefit is increasing from $150,000 to $300,000. They 
have also increased the Accelerated Death Benefit from the 
current 25 percent to 50 percent. 

For more information on the ASPRS Insurance Program, 
please contact: Administrator, ASPRS Group Insurance Pro- 
gram, 1255 23rd Street, NW, Washington, DC 20037 or call  
toll-free (800-424-9883). In the District of Columbia, call 202- 
457-6820. 
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