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Abstract 
A new method for remotely sensed change detection based on 
artificial neural networks is presented. The algorithm for an 
automated land-cover change-detection system was developed 
and implemented based on the current neural network tech- 
niques for multispectral image classification. The suitability 
of application of neural networks in change detection and its 
related network design considerations unique to change 
detection were first investigated. A neural-network-based 
change-detection system using the backpropagation training 
algorithm was then developed. The trained four-layered 
neural network was able to provide complete categorical 
information about the nature of changes and detect land-cover 
changes with an overall accuracy of 95.6 percent for a four- 
class (i.e., 16 change classes) classification scheme. Using the 
same training data, a maximum-likelihood supervised 
classification produced an accuracy of 86.5 percent. The 
experimental results using multitemporal Landsat Thematic 
Mapper imagery of Wilmington, North Carolina are provided. 
Findings of this study demonstrated the potential and 
advantages of using neural network in multitemporal 
change analysis. 

Introduction 
Global environmental change has become a major national and 
international policy issue. Not only does change alter the local 
landscape, but it may also produce ecosystem effects at some 
distance from the source (Dai and Khorram, 1998a). While a 
considerable amount of data about the nature of the Earth's sur- 
face has been collected by remote sensing devices, the volume 
and rate of these data are expected to increase rapidly as more 
images of various resolutions become available in the public 
domain, such as Earth Observing System [EOS) data (Asrar and 
Greenstone, 1995). These remotely sensed data are used to 
determine land use and land cover at a given point in time and 
land-cover changes between multiple dates (Miller et al., 
1995). Given the current techniques available, remote sensing 
provides one of the most feasible approaches to local, regional, 
and global land-cover change detection (Khorram et al., 1999). 

Many change-detection techniques are used in practice 
today. Most techniques are semi-automated because analysts 
still have to manually carry out many image processing tasks 
such as image registration, threshold tuning, and change delin- 
eation. There are also problems associated with semi-auto- 
mated techniques, including being time-consuming, incon- 
sistent, and difficult to apply to large-scale and global informa- 
tion systems, such as the International Earth Observing System 
(IEOS) (Dai and Khorram, 1998b). Additionally, a number of the 
techniques can only provide a binary change mask, and a clas- 
sification procedure must be applied to the multitemporal 
images to extract categorical change information (Serpico and 
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Bruzzone, 1997; Coppin and Bauer, 1996; Singh, 1989). There- 
fore, a reliable automated change-detection system identifying 
categorical changes would be useful in environmental remote 
sensing and its regional or global implementation. This paper 
reports the development of procedures for such a change detec- 
tion system based on artificial neural networks. 

This paper includes five sections. An overview of remotely 
sensed change detection is first presented. Experimental de- 
sign of the proposed neural-network-based change-detection 
system is then discussed, which includes the network input, 
output, and architecture, along with fundamentals of the back- 
propagation training procedure. The experimental results are 
then presented, where we focus on the classification scheme, 
training data development, network parameter selection, gen- 
eralization problems, change detection accuracy assessment, 
and comparison with other techniques of categorical change 
detection. Finally, conclusions and recommendations are 
given. 

Remotely Sensed Change Detection 
Usually, change detection involves two or more registered 
remotely sensed images acquired for the same ground area at 
different times. During the last two decades, there have been 
many new developments in remotely sensed change detection. 
These techniques may be characterized by their functionalities 
and the data transformation procedures involved. Based on 
these characteristics, we can classify current change-detection 
techniques into two broad categories: 

Change Mask Development (CMD): Only changes and non- 
changes are detected and no categorical change informa- 
tion can be directly provided; and 
Categorical Change Extraction (CCE): Complete categorical 
changes are extracted. 

In the first categow, changed and non-changed areas are 
separated by a t6reshoB when comparing the spectral 
reflectance values of multitemnoral satellite images. The 
amount of change is a functionbf the preset thresGold. The 
threshold has to be determined by experiments. The nature of 
the changes is unknown directly from these techniques and 
needs to be identified by other pattern-recognition techniques. 
Therefore, these techniques are only suitable for development 
of a change mask. Most change-detection methods fall into the 
first category. For example, Lmage Differencing, Image Ratioing, 
and Image Regression only lead to the development of a change 
mask. These techniques can be used for data of one band, two 
bands, three bands, or more than three bands, with decision 
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boundaries which are two-threshold, elliptical, ellipsoidal, or 
hyper-ellipsoidal, respectively. The data used can be spectral 
data or data transformed by various linear or nonlinear trans- 
formations, such as vegetation indices (e.g., Normalized Differ- 
ence Vegetation Index ( N ~ V I )  and Tasselled Cap Transforma- 
tion) (Lambin and Ehrlich, 1996). Other linear transformations 
include the multispectral Kauth-Thomas transformation 
(MKT), Gramm-Schmidt orthogonalization (GS), and multidate 
principal component analysis (PCA) (Byrne et al., 1980; Baronti 
et al., 1994; Collins and Woodcock, 1996). 

The CMD techniques in the first category usually can not 
identify what land-cover changes have taken place in the area 
of interest. In CCE, however, the explicit categorical changes are 
detected directly based on the spectral reflectance of the data. 
There are mainly three techniques in this category: Change Vec- 
tor Analysis, Post-Classification Comparison, and Direct Mul- 
tidate Classification. In Change Vector Analysis, the magnitude 
of the change vector represents the degree of change, while the 
direction of the change vector indicates the type of change with 
the help of supervision (Malila, 1980; Michalek et al., 1993). 
This method is computationallyexpensive because the data 
have to be geometrically corrected and digitally merged; then 
transformation coefficients have to be developed, and finally 
spectral/spatial clustering is done. Also, the performance of 
the procedure is sensitive to its parameter setting. Post-Classifi- 
cation Comparison simply classifies each of two images 
acquired at two different times and compares the classified 
maps on a pixel-by-pixel basis to identify the changes. The per- 
formance of this technique critically depends on the accuracies 
of the individual classifications because it does not take into 
consideration the dependence between the two images. The 
accuracy of this technique tends to be the product of the two 
independent classifications, which greatly reduces the final 
accuracy of the change detection (Coppin and Bauer, 1996). In 
contrast, Direct Multidate Classification deals simultaneously 
with the two multispectral images acquired at two different 
times. This method is based on a single analysis of a combined 
data set of two or more dates to identify changes. Each change 
combination between the two times is represented as an output 
class, and the change-detection process is treated as one classi- 
fication. However, to efficiently use this technique and obtain 
training statistics, such as the probabilities of transitions for 
each change combination, one has to develop a set of training 
data in which each pair of training sites corresponds to the 
same ground location in the two images (Bruzzone and Ser- 
pico, 1997). 

In summary, there are five problems associated with cur- 
rent change-detection techniques. First, only very limited 
information or no information at all about the direction and 
characteristics of actual changes (i.e., "from-to" information) 
occurring on the ground can be deduced using most current 
change-detection techniques. The post-classification tech- 
nique provides "from-to" information, but it involves two sepa- 
rate image classifications, which causes the change error to 
accumulate and its accuracy to suffer. Second, while the 
amount of change detected is one of the most important objec- 
tives in change-detection applications, most of the current 
methods need a user-specified threshold to determine the 
amount of change. The threshold is often set empirically 
because there is no theoretical guidance to this problem. Third, 
most techniques are not fully automated and some are not 
quantitative. For example, the Write-Function Memory Inser- 
tion method (Singh, 1989) is basically a visual demonstration 
technique. Fourth, in some change-detection techniques, such 
as post classification, the dependency of information between 
the two images is ignored. Finally, it is challenging in practice to 
use the direct multidate classification technique due to its char- 
acteristics, such as the preference for accurate estimation of 
transitional probabilities of changes. 

To explore the solutions to the problems associated with 
current change-detection techniques, we investigate the use of 
neural networks in a change-detection system. Neural net- 
works represent a fundamentally different approach to statisti- 
cal pattern recognition, because they do not rely on statistical 
relationships (Bischof et al., 1992). Instead, neural networks 
adaptively estimate continuous functions from data without 
specifying how outputs depend on inputs statistically. In past 
decades, the artificial neural network, or multi-layer per- 
ceptron (MLP), has been developed and applied to general pat- 
tern-recognition problems (Schurmam, 1996). Research on the 
use of neural networks in classification of remotely sensed 
imagery started about a decade ago. Researchers have found 
that the neural network approach is a promising avenue for 
classification of remotely sensed imagery (Hara et al., 1994; 
Heermann and Khazenie, 1992). 

In remote sensing, neural networks have been applied to 
both monosource image classification (Dreye, 1993) and multi- 
source data classification (Benediktsson et al., 1990). Most 
researchers concluded that the neural-network-based method 
improved the classification accuracy in comparison with the 
benchmark method: the maximum-likelihood classifier (MLC). 
When the data distributions are strongly non-Gaussian, the 
neural network classifiers are preferable because the assump- 
tion of Gaussian distribution in the MLC is no longer satisfied 
(Paola and Schowengerdt, 1995a). The advantages of the neu- 
ral network method would be beneficial to change detection 
because of the complexity of data types in change detection 
(multisource and multitemporal) (Dai et al., 1998). Change 
detection is different from multisource classification (includ- 
ing using multitemporal imagery) in that extraction of changes, 
including the cover types at both times, is the objective, and the 
results are basically composed of two classification maps. 
Change detection can also be thought of as a form of image clas- 
sification which uses multidate and multispectral imagery as 
its input. Therefore, the principles of neural-network-based 
classification can be applied to change detection. 

A neural network has been used in real-time target detec- 
tion using synthetic aperture radar (SAR) images (Oliver and 
White, 1990). Two major difficulties associated with SAR image 
change detection were identified by White (1991): the removal 
of speckle noise and the registration of images. In this study, a 
neural network was trained to understand speckle noise 
removal. Based on the object features extracted by automated 
image understanding systems, a neural network was used to 
discriminate changed features of human-made objects and 
structures (Uberbacher et al., 1996). In addition to target detec- 
tion applications, artificial neural networks have also been 
found useful in remotely sensed change detection. A neural 
network was trained to combine the different change measures 
at a parcel level, including structure measures (e.g., edges, cor- 
ners, and texture), in order to identify changes and no-changes 
(Rosin, 1994). A method for change-mask development was 
proposed by Chen et al. (1995) using a neural network for 
determining the change and no-change classes directly based 
on the image gray levels. Artificial neural networks were used 
to estimate the quantitative change (mortality) in one category 
of land cover (conifer) (Gopal and Woodcock, 1996). These pre- 
vious studies all contributed to change detection using neural 
networks; however, they were limited to either change-mask 
development or single-class change quantification. Given the 
practical demand for categorical land-cover change detection, 
it is interesting and worthwhile to explore the neural network 
approach to automated change detection identifying categori- 
cal land-cover transitions. 

The objectives of this research are to test the capability of 
artificial neural networks in land-cover change detection and 
to investigate the major procedures for developing a neural-net- 
work-based change-detection system from selection of input 
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data to final assignment of change classes. We approach these 
objectives by emphasizing several important processes, in- 
cluding training data development, change output encoding, 
and training using the backpropagation algorithm. Particular 
emphasis is also given to both the unique problems and charac- 
teristics of the neural network method as compared to conven- 
tional change detection methods such as the commonly used 
Post-Classification Comparison. 

Methods and Data Sets 
The network design of a neural-network-based land cover 
change-detection system considers both architectural and 
parameter selections. Architectural considerations include the 
selection of the network type and the configuration of the net- 
work. Parameter selections define the way in which the net- 
work operates within the architectural context. They include 
design aspects such as the format of the inputs and outputs, 
learning rule and learning schedule, and the data presentation 
decisions, such as composition of the training file and range 
used for normalizing the data. In the following, we investigate 
the basic architectural elements of a neural-network-based land 
cover change-detection system: network input, network output, 
network architecture, and network training parameters and 
procedures. 

Network Input 
The input data for change detection consist of two registered 
images of the same area acquired at different times (usually 
anniversary dates). For multitemporal and multispectral 
remotely sensed data, the favored input structure is to read one 
multitemporal and multispectral pixel into the network at a 
time (Liu and Xiao, 1991). As in most statistical classifiers, the 
pixels of the whole image are fed into the network sequentially 
on a pixel-by-pixel basis. In this case, each input node is used to 
represent the data for one spectral band. If only the nonthermal 
TM bands are used, 1 2  input nodes are required. To incorporate 
other information, additional input nodes can be added and 
different input schemes might be used. For example, in order 
to introduce texture information into the training procedure, all 
bands of the pixels in a 3 by 3 window are used as the input 
(Paola and Schowengerdt, 1995b). The input structure of aneu- 
ral network makes it easy to add additional sources of data to 
the change-detection procedure by simply adding input nodes. 
This makes neural-network-based change detection attractive 
when fusion of optical, radar, and other ancillary data is neces- 
sary. For fully connected neural networks, the presenting order 
of the input data must be consistent. The neural network algo- 
rithms are often designed to take input data ranging from 0 to 1 
to avoid the use of a scale when the sigmoid activation function 
is evaluated and to reduce floating point computations (Paola 
and Schowengerdt, 1995a). Therefore, it is important to scale 
the value of each pixel to this range, and to present the scaled 
values to the input nodes. 

Network Output 

Change Output Encoding 
Due to the large number of change combinations in change 
detection, the output encoding for a land cover change-detec- 
tion system is a challenging task. There are l? change combina- 
tions for a k-class classification scheme. One solution to reduce 
the number of outputs is to use binary encoding. In this method, 
only 2log,k output nodes are required to represent k2 change 
classes. A single output node has also been used to further 
reduce the number of output nodes (Civco, 1993). In Gopal and 
Woodcock (1996), one output node was used to represent the 
continuous change of conifer mortality. However, one output 

node usually has limited capability to identify a large combina- 
tion of output classes. This output encoding scheme is also sub- 
ject to convergence problems because the network is required 
to converge at more than one output value. The natural way to 
encode the output classes is to use one output node per ground 
cover change class, a method called direct encoding. Based on 
our experience, for a classification with less than five classes, 
i.e., 25 change classes, we recommend using direct encoding. 
For a classification with more than five classes, use of the 
binary encoding or another efficient output node reduction 
technique is needed. 

Extraction of Change Classes 
In direct encoding, every output node represents one change 
class and each node is trained to have a high value if the input 
pixel belongs to that class. After the network is trained, the out- 
put values of the network are continuous and need to be coded 
to represent the final change classes. There are two ways to code 
the continuous output values to extract class labels. The first is 
to interpret the continuous output values as a measure of class 
mixing and code them as a membership value in a particular 
change class. The membership interpretation using fuzzy logic 
leads to detection of mixed pixels (Key et al., 1989). The second 
is to characterize the output values as a measure of classification 
confidence. The higher the output value, the higher the confi- 
dence that the pixel belongs to that particular class. Therefore, 
the class label of the input pixel can be coded as the class corres- 
ponding to the output node with maximal output value. This is 
the simplest way to assign a change class to the input pixel. 

Network Tralnlng: Backpropagation Algorithm 
The network in this study was trained using the backpropaga- 
tion algorithm, a supervised learning algorithm that requires a 
series of input-output pairs as the training set. The process of 
training may be thought of as a search in the network parameter 
space guided by an additive error function of statistically inde- 
pendent examples which measures the quality of the network's 
approximation to the input-output relation. The objectives of 
network training are to minimize the error for all possible 
examples and to generalize outside of the training set. 

The backpropagation algorithm was initially developed by 
Rumelhart et al. (1986). It has two phases: a forward phase and 
a backpropagation phase. The output values of the network are 
determined by the forward phase and learning is performed in 
the backpropagation phase. In the forward phase, the outputs of 
each layer are transmitted to the nodes in the successive layer. 
In the backpropagation phase, learning is performed using 
supervised gradient decent learning algorithms. The learning 
algorithm iteratively adjusts the weights of the connections in 
the network in order to minimize a continuous differentiable 
error function between the actual and desired outputs. The 
weights are adjusted by taking incremental changes: i.e., 

where Eis the square of errors between the desired outputs and 
actual outputs; q, the learning rate, is the percentage of the step 
taken towards the minimum error in each iteration. The 
method of adaptive learning rates can be used to reduce train- 
ing time and ensure stability at the same time (Jacobs, 1988). To 
avoid the network spending a lot of time going back and forth 
between training examples while learning, different method of 
averaging can be used instead of batch learning. Rumelhart et 
al. (1986) suggested modifying Equation 1 by adding a momen- 
tum term as follows: 
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where Aw(n + 1) and Aw(n) are the weight changes at step (n + 
1) and step n, respectively, and a is the momentum. Rather 
than averaging the derivatives, momentum averages the weight 
changes themselves (Smith, 1993). Used in conjunction with 
example-based learning, momentum speeds the reduction in 
the error with less computation. 

Network Architecture 
The numbers of necessary inputs and outputs, and the structure 
of the first and last layers of the neural network, are often fixed 
after the determination of input data types and output data 
structure. However, the number of hidden layers and their size 
must be determined experimentally. More hidden layer nodes 
give the network more flexibility in partitioning the decision 
space. Generally, for classification of multispectral imagery, a 
three-layer fully interconnected network is sufficient and is 
the most common implementation seen in the literature (Paola 
and Schowengerdt, 1995b). For more complex problems, such 
as change detection with large change combinations, the arbi- 
trary decision capabilities of a four-layer network may be 
required in order to achieve an accurate classification. There- 
fore, a four-layer network was used in these experiments. 

The architecture of the four-layer network considered in 
this research is shown in Figure 1. In this diagram, the input 
data are the two registered Landsat Thematic Mapper (TM) 
images of the same area. The number of the input nodes is deter- 
mined by the number of TM bands used in the change detection. 
The number of output nodes is decided by the number of 
ground-cover classes and the output encoding scheme. For 
direct encoding, k2 output nodes are required to accommodate 
a k-class application. The network parameters such as the learn- 
ing rate and momentum, the termination rule, and the number 
of nodes in each hidden layer are determined by experiments. 

Data Sets 
The image data used to develop and test the neural-network- 
based land cover change-detection system correspond to the 
surroundings of Wilmington, North Carolina with flat topogra- 
phy. Two Landsat TM images of this area were used: one col- 
lected on 24 November 1988 (Tb) and the other on 26 December 
1994 (Tb+l). The six nonthermal TM spectral bands used in the 
change detection were blue (TM band I) ,  green (TM band 2), red 
(TM band 3), and three infrared bands (TM bands 4 , 5 ,  and 7). 
Therefore, the neural network has 12 input nodes. Each pixel in 
the image corresponds to a ground cell 28.5 by 28.5 m in size. 
The Winter 1988 scene and Winter 1994 scene have been regis- 
tered to each other with a quarter pixel accuracy. A 512 by 512 
subscene of the six nonthermal bands was used for land cover 
change-detection experiments. 

Results 
Classlflcation Scheme 
The desired output was a classified change map based on a vari- 
ation of the standard land-uselland-cover classification 
scheme proposed in Anderson et al. (1976). The present 
scheme differs from the Anderson Type I scheme in that the 
classifications in this study exclude snow and tundra and com- 
bine agricultural and urban land into a single category. The 
final classes are (1) forest, (2) agriculture/barelurban (ABU), (3) 
cypresslwet deciduous scrublmarsh ( c ~ M ) ,  and (4) water. The 
reasons for using this classification scheme in the experiments 
include (1) the classification logic should be unambiguous; (2) 
the classes should be remotely sensible, maximizing between- 
class variations and minimizing within-class variations; and (3) 
further distinction should be facilitated based on the classifica- 
tion results. 

- - - - - - - -  
\ 

I (2rn:nI:nz:o) network - - - - - - -  d 

Image B 

Figure 1. Neural network architecture for a change detection system. This 
four-layer neural network includes an input layer with (2m) input nodes, two 
hidden layers with n, and n2 nodes, respectively, and one output layer with 
k2 output nodes for a k-class classification scheme. 
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Each class or each land-cover change combination has a 
value in the output portion of the data vector. The output cod- 
ing scheme is listed in Table 1. Using direct output encoding, 
each land-cover change is represented by one output node. 
Therefore, there are 16 output nodes in the proposed system. 

Development of Training Data and Test Data 
Training data selection is a problem common to all supervised 
training algorithms. Not only must the training data be repre- 
sentative of the classes, but there must also be as much separa- 
bility as possible between classes in the feature space. In this 
study, the training sites were extracted manually from individ- 
ual dates with the help of aerial photography and the standard 
false-color composite image (for TM data, band 4,3, and 2 as R, 
G, and B in the display monitor). A set of homogeneous train- 
ing regions which were representative of the classes in the 
study were defined and digitized on a %-bit color screen using 
magnification. Multiple training sites were digitized on the 
screen for each class in both Tb and Tb+l. Then, 200 samples 
were randomly chosen from the training data for each class per 
date. The change detection in this study focuses only on the 
four-class scheme described above, but these samples include 
pixels extracted from all sub-classes to accommodate further 
classifications. For example, samples of ABU include agricul- 
ture land, bare soil, and urban area. 

In supervised classification, spectral signatures can be 
characterized by their statistical representativeness (e.g., mean 
and co-variance matrix) and spectral separability in feature 
space. Signatures of the same class or change class with these 
characteristics are assumed to be transportable over the whole 
image if the data are acquired under the same imaging condi- 
tions in an area with flat topography. Furthermore, in neural- 
network-based change detection, there is no need to use the 
predefined distributions of data to estimate the transitional 
probabilities of changes from the training data. Therefore, the 
condition of ground-correspondence for the training data of 
each change combination can be relaxed to different ground 
locations in each image. This general principle, that one can 
relax the requirement for the training pixels to be from the 
same ground locations, also applies to a statistical approach, 
such as the classifier using maximum likelihood, when the 
transitional probabilities of changes could be set to equal. It 
must be noted that this spatially non-coincident method for 
training might need further investigations for hilly areas 
because of the difference in topography or data acquired under 
different imaging conditions. 

Based on the discussion above, a signature for class A in 
the Tb image and a signature for class B in the Tb + image can 
be combined and used as the signature of the change class (A to 
B, denoted as A - B) in change detection. For example, one area 
for forest in one date and another for urban in another date can 
be used to train the network for the transition "forest to urban." 
The process of compiling the signature inputs for neural-net- 
work-based change detection is shown in Table 1. Thus, sam- 
ples of input-output pairs were produced for training and 

testing the neural networks. These samples were further 
divided into two groups: samples for network training and sam- 
ples for testing the trained network. The training and test data 
were presented to the neural network in the form of vectors 
derived from spectral signatures, with one value per input 
band and one per output change class. In this situation, inputs 
are represented by 12-band pixel values, and output values 
determine the land-cover change classes of the input pixels. 

Results of Change Detection 

Network Daining 
For the training stage of supervised change detection, the net- 
work weights are adjusted during the backpropagation training 
procedure. The input data vector is the pattern to be learned 
and the output vector is the desired set of output values to be 
produced by the network after training. The overall objective of 
training is to minimize the overall error between the desired 
and actual out~uts  of the network. The initial learnine rate was 
set to 0.001,wkh adaptation occurring at every epochvin batch 
training. The rate of learning rate increase was set to 1.07 and 
the rate-of learning rate decrease to 0.7. The momentum was set 
to 0.00005. The numbers of hidden nodes were determined by 
iterative trails. We started horn a 12-36-36-16 configuration 
and concluded that a configuration of 12-36-48-16 achieved the 
best results in terms of the sum square error and the generaliza- 
tion capability of the trained network. 

Network Generalization 
In this work, we used direct output encoding, i.e., each output 
change class corresponded to one output node. The class mem- 
bership of an input pixel was determined by choosing the out- 
put unit with the highest activation. This method did not use 
any threshold and assured that every pixel in the image was 
classified. The change-detection accuracy of the trained net- 
work was 100 percent on the training data. Applying the 
trained network to the test samples yielded a change-detection 
accuracy of 98.9 percent. The trained change-detection net- 
work was then used as a feed-forward network to detect 
changes in the entire image. It shows that the trained neural net- 
work has enough generalization capability to extend what it has 
learned about the training patterns to the rest of the image. The 
evaluation of the change-detection results is addressed in the 
following sub-sections. 

Accuracy Assessment 
We estimated the accuracy from a subset of the samples for 
which ground truth was available. For unbiased estimation, 
the number of samples for each class is roughly proportional to 
the histogram of the classified image. Sparsely populated 
change classes were discarded in the change-detection accu- 
racy assessment due to the difficulty of finding ground truth 
data. For example, the change classes of Forest to Water, Agri- 
culture/Bare/Urban to Water, and Water to Agriculture/Bare/ 
Urban have only 44'38, and 42 pixels, respectively, out of the 

TABLE 1. OUTPUT CODING SCHEME AND SIGNATURE COMPOSITION FOR NEURAL NEIWORK CHANGE DETECTION. EACH CHANGE CLASS IS REPRESENTED BY ONE OUTPUT 
NODE. A SIGNATURE FOR CLASS A IN Tb IMAGE AND A SIGNATURE FOR CLASS B IN Tb+l IMAGE ARE COMBINED AND USED AS THE SIGNATURE FOR THE CHANGE 

Cmss, A TO B. 

"to" Classes and Signatures Extracted in 1994 
- 

Output Coding (OC) Forest ABU CWM Water 
and Signature 

Composition (SC) OC SC OC SC OC SC OC SC 

"from" Classes and Forest 1 Forest-Forest 2 Forest-ABU 3 Forest-CWM 4 Forest-Water 
Signatures Extracted ABU 5 ABU-Forest 6 ABU-ABU 7 ABU-CWM 8 ABU-Water 
in 1988 CWM 9 CWM-Forest 10 CWM-ABU 11 CWM-CWM 12 CWM-Water 

Water 13 Water-Forest 14 Water-ABU 15 Water-CWM 16 Water-Water 
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TABLE 2. ERROR MATRIX OFTHE NEURAL-NETWORK-BASED CHANGE DETECTION, CONSTRUCTED BY COMPARING THE CLASSIFICATION MAP PROVIDED BY THE NEURAL 
NETWORK ALGORITHM WITH THE CORRESPONDING GROUND TRUTH DATA ON 1:24,000-SCALE AERIAL PHOTOGRAPHY. 

Change Detection Results from the Proposed Neural-Network-Based Algorithm A m 
4- 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 g 
1 199 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 200 

12 
13 
14 
15 
16 

Total 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 3 0 
4 0 0 5 
61 2 0 1 
0 0 0 0 
0 0 96 0 
0 0 1 61 
0 0 0 0 
0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
65 0 102 69 

Overall Accuracv: 95.6% 

512- by 512-pixel study area. These changes might be caused 
by different water levels andlor misregistration. The final error 
matrix, as shown in Table 2, was constructed by comparing the 
classification map provided by the neural network algorithm 
with the corresponding ground truth data from 1:24,000-scale 
aerial photography, acquired in Winter 1988 and Winter 1994, 
respectively. In this matrix, we put the true land-cover changes 
(as determined from the ground truth) on the rows and the land- 
cover changes detected by our algorithm on the columns. The 
terms on the diagonal of this matrix give correctly recognized 
land-cover changes, while the other terms identify errors. The 
overall accuracy of change detection was estimated to be 95.6 
percent. 

Comparison with Post-Classification Protocol 
The technique of Post-Classification Comparison has been used 
as a benchmark method in the literature to do comparisons 
with other methods (Bruzzone and Serpico, 1997). The maxi- 
mum-likelihood supervised classification was used to inde- 
pendently classify the two images using the same training sets 

as developed for the neural-network-based change detection. 
The error matrix resulted from the post-classification compari- 
son method is shown in Table 3. By comparing the classifica- 
tion maps from the two dates with the ground truth data, the 
overall accuracy achieved was determined to be 86.5 percent. 
Therefore, the neural-network-based change-detection algo- 
rithm outperformed the maximurn-likelihood-based Post- 
Classification Comparison in terms of the overall change-detec- 
tion accuracy. In fact, a decrease in accuracy was present in 
almost all change classes. 

Conclusions and Recommendations 
The research reported in this paper developed and irnple- 
mented the methodologies and algorithms for a change infor- 
mation extraction system using multiternporal remotely sensed 
imagery, focusing on land-cover change detection using artifi- 
cial neural networks. Based on the experiments, the neural net- 
work model for digital change detection using the generalized 
delta rule showed a great potential as an efficient change-detec- 
tion technique. Our approach to land-cover change detection 

TABLE 3. ERROR MATRIX OFTHE CHANGE DETECTION RESULTS PRODUCED BY THE POST-CLASSIFICATION COMPARISON METHOD USING A MAXIMUM-LIKELIHOOD 
SUPERVISED CLASSIFICATION. 

Change Detection Results from the Post-Classification Comparison Algorithm - 
3 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 8 
1 183 2 8 0 2 0 0 0  5 0 0 0 0 0 0 0 200 
2 1 20 2 0 2 0 0 0 0 0 0 0 0 0 0 0 25 
3 3 6 38 3 0 0 0 0  0 0 0 0 0 0 0 0 50 
4 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 
5 2 0 0 0 17 4 0 0 0 0 0 0 0 0 0 0 2 3 

9 6 2 6 0 0 7 175 4 0 0 5 0 0 0 1 0 0 200 
2 7 t+ 0 0 0 0 3 5 51 6 0 0 5 0 0 0 0 0 70 
a 8 0 o 0 0  0 0 0 0 o o o 0 o o o o o 
d 
3 9 10 0 0 0 7 0 0 0 75 4 0 0 4 0 0 0 100 

10 8 11 
0 0 4 3  0 4 0 0 0 53 6 0 0 0 0 0 70 
3 0 0 0 0 5 2 0 0 0 179 4 0 0 7 0 200 

12 0 0 0 0  0 0 0 2 0 0 1 10 0 0 0 2 15 
13 0 0 0 0  0 0 0 0 2 0 0 0 7 0 1 0 10 
14 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 1 2 15 2 20 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 200 

Total 204 34 52 6 36 195 57 8 82 62 191 14 12 3 23 204 1183 
Overall Accuracy: 86.5% 
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is unique in that artificial neural networks are systematically 
used for the first time to develor, an automated change-detec- 
tion system identifying complete categorical land-c&er change 
information. The advantages of this method are summarized 
as follows: 

This method provides complete categorical land-cover changes, 
i.e., complete "from-to" information which is desirable in most 
change-detection applications; 
Knowledge of the statistical distribution of the data is not 
required. This is an advantage over most statistical methods 
requiring modeling of the data which is difficult when there is 
no knowledge of the distribution functions or when the data 
are non-Gaussian; 
This method has the potential to provide a reliable tool for 
effectively integrating various remotely sensed data and 
existing geographic data. Multisource data can be easily added 
into the process by adding additional input nodes; 
The neural network approach to change detection naturally uses 
the data of two dates simultaneously and makes use of the time 
dependency of the data. This method is also free from accumula- 
tive errors, unlike the Post-Classification Comparison; and 
The trained neural network for change detection can perform 
change detection on a pixel-by-pixel basis in real-time. There- 
fore, this method has implications for real-time operation in 
local or regional applications. 

I 
Based on this research, the following three areas were iden- 

tified for future investigations: (1) elimination or relief of the 
negative effects of image misregistration. The accuracy of 
change detection critically depends on the accuracy of image 
registration, and subpixel misregistration could have a marked 
impact on the ability of a change detector to detect real changes 
on the ground (Dai and Khorram, 1998a); (2) false changes 
caused by data inconsistency. There are variations among 
multitemporal images, even of the same geographic area, 
because of such factors as different atmospheric conditions, 
differences in sun angle, differences in soil moisture, difference 
in topography, and lack of sensor calibration; and (3) mixed 
pixel modeling. Most currently available remotely sensed data 
comes from low-resolution sensors where the ground cell itself 
may comprise various classes at once, i.e., the mixed pixel 
problem. Given the facts of lengthy neural network training, 
the huge data volume to be processed, and the practical de- 
mand for fast or even real-time operation, it is worthwhile to 
explore artificial intelligence approaches to automated change 
detection. Research on intelligent and automated change infor- 
mation extraction from remotely sensed imagery will continue 
to increase as the data volume becomes larger, data rates 
become higher, and the image processing ability of machines 
becomes faster. 
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