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Abstract 
Specific leaf area (SLA) is an important ecological variable 
because of its links with plant ecophysiology and leaf 
biochemistry. Variations in SLA are associated with variations 
in leaf optical properties, and these changes in leaf optical 
properties have been found to result in changes in canopy 
reflectance. This paper utilizes these changes to explore the 
potential of estimating SLA using Landsat TM data. 

Fourteen sites with varying vegetation were sampled on 
the Lambert Peninsula in Ku-ring-gai Chase National Park to 
the north of Sydney, Australia. A sampling strategy that 
facilitated the calculation of canopy-avemge surface SLA 
(sLA~~) was developed. The relationship between Sacs, 
reflectance in Landsat TM bands, and a number of vegetation 
indices, were explored using univariate regression. The 
observed relationships between S u m  and canopy reflectance 
are also discussed in terms of trends observed in a pre-existing 
leaf optical properties dataset (LOPEX 93). 

Field data indicate that there is a strong correlation 
between S L A ~  and red, near-infrared, and the second mid- 
infmred bands of Landsat TM data. A strong correlation 
between sum and the following vegetation indices: Soil and 
Atmosphere Resistant Vegetation Index (SARVIZ), Normalized 
Difference Vegetation Index (NLWI), and Ratio Vegetation Index 
(RVI), suggests that these vegetation indices could be used to 
estimate S L A ~ ~  using Landsat TM data. 

Introduction 
A number of important biophysical and biochemical parameters 
for ecosystem modeling, including leaf area index (LAI), specific 
leaf area (SLA), biomass, fraction of photosynthetically active 
radiation absorbed   PAR), and total nitrogen, have been identi- 
fied in recent years. Specific leaf area, the one-sided area of the 
leaf divided by the dry weight of the leaf, has been the focus of 
recent research into plant ecophysiology and leaf biochemistry, 
and has been found to link plant functional types around the 
world. Table 1 shows average SLAS associated with major vegeta- 
tion types. Examples of significant relationships between eco- 
logical and biochemical variables and SLA which have been , 

described in recent research are described in Table 2. 
Some recently developed ecological and biogeochemical 

models have included SLA values as aspatial parameters. 
BIOME3 (Haxeltine and Prentice, 1996) and the Terrestrial 
Uptake and Release of Carbon model (TURC) (Ruimy et al., 
1996) are two examples. There is potential for improving these 
models by including remotely sensed, rather than aspatial, sLA 
datasets. A spatial SLA dataset could be incorporated into eco- 
logical and biogeochemical models in a similar fashion to a leaf 
area index (LAI) dataset, potentially allowing the inclusion of 
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parameters such as leaf life span, litterfall rate, leaf carbon to 
nitrogen ratio, and canopy nitrogen content. The inclusion of 
SLA and associated parameters into future ecological models 
would facilitate parameterization of more plant ecophysiologi- 
cal constraints. The incorporation of such parameters into bio- 
geochemical models could assist in the calculation of carbon 
and nitrogen turnover rates. 

SLA &d its inverse, leaf mass per unit area (LMA, also 
known as specific leafweight, SLW), have also been shown to 
be important for the remote sensing of canopy biochemical con- 
tent. Recently, methods of remotely sensing canopy biochem- 
istry have been developed using hyperspectral scanners to 
measure the specific absorption of individual compounds 
(Curran et al., 1997; Jacquemoud et al., 1996; Martin and Aber, 
1997). However, according to Baret and Fourty (1997), these 
methods, while successful foc their individual sites, do not 
transfer well to other sites or, in some cases, even to other times 
of the year for the same site. They found that the only biochemi- 
cal variables that could be reliably estimated from canopy 
reflectance were SLW and leafwater content. 

Although SLA is an important biophysical variable, few 
previous studies have examined the possibility of estimating 
SLA from remotely sensed data. An important study by Pierce et 
al. (1994) reported relationships between LAI and canopy-aver- 
age SLA and leaf nitrogen content, and suggested that both SLA 
and leaf nitrogen could be predicted from remotely sensed LAI 
values. Other studies include Running et al. (1995) which pro- 
posed the calculation of SLA based on leaf life span, calculated 
from a normalized difference vegetation index (NDVI) time 
series, and Fourty and Baret (1997) which examined the calcu- 
lation of canopy sLw using hyperspectral data. The present 
study aims to more directly examine the effect of SLA on can- 
opy reflectance, and, therefore, the possibility of monitoring 
SLA using low spectral resolution satellite data. 

SLA has been shown to be genetically encoded (Mooney et 
al., 19781, though variations do occur in plants of single spe- 
cies. Preliminary fieldwork in a study area with a wide variety 
of water and nutrient availability, and therefore diverse vegeta- 
tion, indicated spatial relationships between reflectance data 
and plant species. Areas of high reflectance at near-infrared 
(NIR) wavelengths were associated with forest eucalypts, for 
example, Angophom jloribunda, while low reflectances were 
associated with open health species, for example, Banksia eri- 
cifolia. The wide range of leaf structures, and data from Sum- 
merhayes (1996), indicated a wide range of SLA values would 
be obtained in the field. 
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TABLE 1. MAJOR VEGETATION TYPES AND THEIR AVERAGE SLA (FROM TABLE 1 

IN SCHULZE ETAL. (1994)) 

Average SLA Standard 
Major vegetation type (m2/kg) error 

Evergreen conifers 
Monsoonal forest 
Temperate evergreen broadleaf 
Sclerophyllous shrubland 
Tropical rainforest 
Deciduous conifers 
Temperate deciduous trees 
Tropical deciduous forest 
Temperate grassland 
Broadleaved crops 
Cereals 

The rationale for examining the use of low spectral resolu- 
tion data to estimate SLA is based on research examining the 
use of vegetation indices to estimate LAI, both in the field (for 
example, Coops et al., 1997; Gong et al., 1995; Spanner et al., 
1990) and using models to simulate reflectance spectra (for 
example, Gobron et al., 1997; Myneni et al., 1997). The estima- 
tion of LAI from a vegetation index is based on the effect that the 
optical depth (number of leaves) of the canopy will have on 
that vegetation index (Gobron et al., 1997; Myneni et al., 1997), 
i.e., a high number of leaves will imply a large optical depth, 
which will result in a high vegetation index. A number of 
authors have recently suggested that the optical properties of 
the elements (leaves) that make up the canopy may also affect 
canopy reflectance and the response of vegetation indices 
(Asner et al., 1998; Huemmrich and Goward, 1997; Huete et al., 
1997; van Leeuwen and Huete, 1996). Therefore, the expected 
relationship between SLA and the optical properties of the 
leaves, and the accumulative effect on canopy reflectance, 
imply that it may be possible to estimate SLA using low spectral 
resolution satellite data. 

SLA and Leaf Optkal Pmpettles 

Leaf surface modifications associated with low SLA, i.e., tri- 
chomes, waxes, and salt bladders, increase the amount of 
reflectance in the green band (Sinclair and Thomas, 1970; 
Thomas and Barber, 1974). 
Low chlorophyll a concentrations, associated with low SLA, 
increase green reflectance by decreasing absorption at these 
wavelengths (Gitelson et al., 1996; Yoder and Waring, 1994). 

SLA and reflectance in the red band: 

Leaf surface modifications associated with low SLA, also 
increase the amount of reflectance in the red band (Sinclair 
and Thomas, 1970; Thomas and Barber, 1974). 
Low chlorophyll a, chlorophyll b, and xanthophyll concentra- 
tions, associated with low SLA, result in an increase in red 
reflectance (Curran et al., 1997; Fourty et al., 1996; Govaerts et 
al., 1996; Jacquemoud et al., 1996; Martin and Aber, 1997; Vogel- 
mann, 1994; Wooley, 1971). 

SLA and reflectance in the near-infrared (NIR) band: 

The presence of non-veinal sclerenchyma and sclereids, that 
reduce SLA, also reduce the amount of NIR reflectance (Gaus- 
man, 1974; Vogelmann, 1994). 
The presence of non-metabolic carbon compounds such as cel- 
lulose, hemicellulose, and lignin in cell walls, that reduce SLA, 
also act to decrease the amount of NIR reflectance (Fourty et al., 
1996; Govaerts et al., 1996; Jacquemoud et al., 1996). 
It should be noted, however, that refraction at air-water inter- 
faces at cell walls is the dominant influence on NIR reflectance. 

SLA and reflectance in the mid-infrared bands, m l  and m 2 :  

Leaf water content varies in a pattern similar to SLA, i.e., high 
SLA is associated with high leaf water content (Reich et al., 
1997), and increases in leaf water content decrease reflectance 
in the MlRl and MIRz bands (Fourty and Baret, 1997). 
Although the presence of non-metabolic carbon compounds, 
that reduce SLA also act to decrease the amount of MIRI and 
h m z  reflectance (Fourty et al., 1996; Govaerts et al., 1996), in 
these bands the effect of leaf water content on canopy 
reflectance can override the effect of non-metabolic carbon con- 
tent (Jacquemoud et al., 1996). 

The expectid influence of SLA on leaf optical properties in the Based on these reported relationships, it may be possible to associated with TM bands are shown in remotely sense SLA using low spectral resolution satellite data, Table 3. The source and rationale for these relationships is out- facilitating the estimation of canopy biochemistry over a range lined briefly below. of vegetation types, and providing improved parameters for 
SLA and reflectance in the green band: inclusion into ecological and biogeochemical models. 

TABLE 2. THE RELATIONSHIP BETWEEN SLA AND ECOLOGICAL AND BIOCHEMICAL VARIABLES 

Relationship 
Ecological variable with SLA Authors 

- - 

Net photosynthesis Direct Reich et a]., 1998; Reich et al., 1997; Schulze et al., 1994 
Leaf area index Direct Fassnacht and Gower, 1997; Jose and Gillespie, 1997; Schulze et a]., 1994 
Ecosystem production efficiency Direct Reich et al., 1997; Jose and Gillespie, 1997 
Above-ground net primary productivity Direct Fassnacht and Gower, 1997 
Leaf life span Inverse Reich et a]., 1998; Reich et a]., 1997; Atkin et al., 1996; Ryser, 1996 
Biochemical variable 

Leaf nitrogen content Direct Baret and Fourty, 1997; Schulze et a]., 1994 
Leaf cellulose and lignin content Inverse Baret and Fourty, 1997; Fourty and Baret, 1997; Jacquemoud et a]., 1996 
Leaf water content Direct Shipley, 1995 

TABLE 3. THE EXPECTED ~NFLUENCE OF SLA ON CANOPY REFLECTANCE 

Mid-infrared Mid-infrared 
Landsat TM band Green Red Near-infrared 1 2 

Wavelength (nm) 520-600 630-690 760-900 1550-1750 2080-2350 
Expected relationship with SLA Inverse Inverse Direct Inverse Inverse 
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Figure 1. The location of the Lambert Peninsula on the Aus- 
tralian coast. 

Study Area 
Fourteen sample sites were located in the Ku-ring-gai Chase 
National Park on Lambert Peninsula which is located in 
coastal New South Wales, Australia (Figure 1). The study area 
has an elevation ranging from sea level to 227 meters. The cli- 
mate of the Sydney region surrounding the Lambert Peninsula 
is temperate, with warm to hot summers and cool to cold win- 
ters and mainly reliable rainfall year round (Australian Bureau 
of Meteorology, 1991). 

The Lambert Peninsula includes a wide range of soil types 
that vary in nutrient and water availability from extremely 
deficient to high (Chapman and Murphy, 1989). Nutrient and 
water availability have an influence on SLA (Djikstra, 1990; 
Summerhayes, 1996), for example, high SLA is associated with 
areas of high water and nutrient availability. A wide range of 
vegetation types is found in the area. Small areas of marginal 
rainforest are found in some deep gullies, while open forest is 
found on south facing slopes which are cooler and more moist 
than north facing slopes, in gullies, and in areas with fertile 
soils. Ridgetops and headlands have shallow soils which gener- 
ally lack nutrients; the vegetation in these areas is variable, but 
is usually described as heath (Benson and Howell, 1994). Inter- 
mediate vegetation includes open forest which grades into 
woodland and low woodland. Open forest and woodland com- 
munities are heterogeneous, with different degrees of canopy 
closure, and a variety of understory species (see Table 4). 

Data Collection and Processing 
meld SLA Measurements 
Field data were collected between 01 November 1997 and 31 
January 1998. The location of the sample sites is shown in Fig- 
ure 2. Each site was north oriented, and 25 meters by 25 meters 
in size as seen in Figure 3. The size and orientation of the sites 

Figure 2. Site locations and numbers shown on a Landsat 
TM image of NDVI values. 

25m 

25m 

Figure 3. Site layout. 

Foliage cover of the Growth form and height of No. of 
Vegetation typet tallest stratum tallest stratum sample sites 

Closed forest >70% Trees 10-30 meters 1 
Low closed forest with emergent trees >70% Trees < 10 meters 1 
Open forest 30-70% Trees 10-30 meters 5 
Low woodland/low open woodland 0-30% Trees < 10 meters 2 
Closed scrublscrub-heath 30-70% Shrubs > 2 meters 4 
Pockets of heath on rocky outcrops 10-30% Shrubs < 2 meters 1 

tClassification based on Specht (1970). 
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was chosen to correspond with the pixel size and orientation of 
the satellite data. The vegetation at each site was sampled 
along two diagonal transects. 

Remotely sensed reflectances are affected predominantly 
by the upper portions of the canopy (Goward et al., 1994). 
Therefore, procedures were developed to measure canopy- 
average surface SLA (s-~). All leaves used to estimate species 
SLA were sun leaves chosen from the top part of the canopy. 
This is of particular importance with sLA which has been 
shown to vary with depth in the canopy (Ellsworth and Reich, 
1993), though this effect is less important in open canopies 
(Bartelink, 1997). Because the vegetation was heterogeneous in 
terms of species composition, it was necessary to develop a 
process in which the SLAS of individual species within the can- 
opy could be averaged. Further, in the open canopies it was 
necessary to incorporate SLA from the understory vegetation 
because this vegetation will affect remotely sensed data (Span- 
ner et a]., 1990). 

At each site one (small) branch which contained sun leaves 
was chosen at random for each species. Leaves were removed 
from the branch, catalogued, and, to ensure they remained flat, 
transported to the laboratory in a plant press. Species were col- 
lected sequentially along each transect for all species with more 
than approximately 1 percent cover on that transect. The per- 
centage cover of each species was estimated using its cumula- 
tive length along the transect. Once all the species in the 
overstory had been collected, the process was repeated for the 
understory species (where such existed). Leaf area was deter- 
mined by scanning five fresh leaves for each species using a 
Delta T" scanner (Delta T Devices, Cambridge, UK). The 
leaves were then oven dried at 80°C for 48 hours and weighed. 
sLAcs was calculated as follows: 

where irepresents the individual species, Ai is the five-leaf area 
(mm2), Wi is the five-leaf dry weight (mg), Di is the cumulative 
distance along the transect for each species, and D, is the sum of 
all Di. (D, could be greater than the transect length due to over- 
lapping canopies, or less than the transect length where 
understory and overstory existed.) Where an understory and 
overstory existed, S L ~ ~  was calculated for each story. 

The SLAC~ for each story was weighted using a sky view fac- 
tor (SVF) to calculate sws for that transect. SVF was recorded 
at five points within each site (Figure 3). Photographs, looking 
up at the sky zenith point, taken at a height of 2 meters, were 
used to quantify the degree of canopy closure (the inverse of 
SVF) in the overstory. SVF was determined by using the image 
processing software Erdas Imagine 8.2@ (Erdas Inc., Atlanta, 
Georgia) to perform a supervised classification of the photos 
taken of the canopy. Each photograph was classified into two 
classes, canopy or sky. From the classified image, the SVF was 
calculated as the number of "sky" pixels divided by the total 
number of pixels. The transect SUcs was then calculated 
according to the following equation: 

where Y is the sky view factor, OS-SLAcs is the overstory SLAcs 
and US-SLACS is the understory Sws. sws was calculated as 
the average of the two transect SWs values. 

Landsat TM Image Data 
Landsat TM data, re-sampled to 25 meters resolution, was 
acquired for 25 November 1997 to correspond with the field 
sample dates. All image processing was done using Erdas Imag- 
ine 8.2@. The Landsat TM scene was georeferenced to a sub- 
pixel root-mean-square error using eight ground control points. 

Sample sites were located on the ground using a 1:25,000-scale 
map, because the GPS data proved inaccurate when measured 
beneath some canopies. To reduce the effects of canopy hetero- 
geneity, a nine-pixel mean was calculated for each site (Wess- 
man et al., 1988). This process also takes account of the small 
residual uncertainty in registration between satellite data and 
ground area. 

LOPEX Data 
Data from the Leaf Optical Properties Experiment (LOPEX 93) 
(Hosgood et al., 1995) dataset was used to examine the impact 
of SLA on leaf optical properties in a laboratory environment. 
The LOPEX 93 dataset was created using Northern Hemisphere 
woody and herbaceous species to examine the impact of leaf 
biochemistry on leaf optical properties: the measurements of 
leaf area and leaf dry weight which are needed to calculate SLA 
were also made. Species were selected from the LOPEX 93 data- 
set which had SLAs between 1.0 and 20.0 m2/kg, which is the 
same range as those found in the field study. The narrow band 
reflectances from a stack of ten leaves for each species were 
averaged across the wavelengths associated with the bands of 
Landsat TM data. This is similar to the process described in 
Asner et al. (1998) which convolves individual leaf reflectance 
and transmittance spectra to the bands of AVHRR and MODIS 
data, to examine the impact of leaf optical properties on satel- 
lite-based reflectance data. 

Data Analysis Techniques 
Unlvadate Regression 
Univariate regression was used to examine the relationship 
between the following variables: 

SLA, and individual band reflectances, 
SLA, and the vegetation indices listed in Table 5, and 
SLA and the reflectance kom a stack of ten leaves in the LOPEX 
93 dataset, 

using the following four equations: 
a linear equation: Y = a + bX 
a power equation: Y = aXb 
an exponential equation: Y = aebx 
a natural logarithm equation: Y = a + b*lnX 

where Y is SLA or s w s ,  a and bare regression coefficients, and 
Xis the independent variable. 

Results and Dlscusslon 
The S L A ~ ~  value for each site is presented in Table 6. S w s  
ranged from 3.92 to 17.15 m2/kg, with low sws values associ- 
ated with heath and low woodland, and high SUcs values asso- 
ciated with open forest and closed forest. 

The high sws value recorded for the closed forest site (site 
14) results from the presence of exotic species with high SLA 
values. These exotic species were only present in a very small 
section of the study area, which limited the number of possi- 
ble sample sites that could be located in that vegetation type. 
The pattern of S L A ~ ~  distribution is consistent with the pattern 
of interspecific SLA distribution described in Summerhayes 
(1996), i.e., high SLA occurs in areas with high water and nutri- 
ent availability, and low SLA occurs in areas with low water and 
nutrient availability. The range is also consistent with the aver- 
age SLA values reported by Schulze et al. (1994), and falls 
within the lower part of the range for broadleaved evergreens 
reported by Reich et al. (1997). 

Refiectsnce In the MslbSe Bands 
The green and red bands of the Landsat TM data showed strong 
correlation with sws  (Figures 4a and 4b and Table 7). The 
negative nature of the relationship is consistent with the associ- 
ations described in the Introduction, implying that leaf surface 
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TABLE 5. VEGETATION ~NDICES USED IN THIS STUDY 

Vegetation index (acronym) Formula Author 

Ratio Vegetation Index (RVI) 

Normalized Difference Vegetation Index 
(NDW 

NIWRed 

(NIR - Red)/(NIR + Red) 
Jordan (1969) 

Rouse et al. (1973) 

Green Normalized Difference Vegetation 
Index (GNDVI) 

Soil Adjusted Vegetation Index (SAW) 

Perpendicular Vegetation Index (PVI) 

Soil and Atmosphere Resistant Vegetation 
Index (SARVI2) 

Specific Leaf Area Vegetation Index 
(SLAW) 

(NIR - Green)l(NIR + Green) Gitelson et al. (1996) 

((NIR - Red)/(NIR + Red + L)) x (I + L)t 

sin(a)NIR - cos(a)Redtt 

(25 X (NIR - Red))/ 
11 + NIR + (6 X Red) - (7.5 X Blue)] 

NIR/(Red + MIR2) 

Huete (1988) 

Richardson and Wiegand 
(1977) 

Huete et ol. (1997) 

Present Study 

tL is the fractional vegetation cover. 
t t o  is the angle between the soil line and the axis on which is plotted. 

modifications and low chlorophyll a concentrations associated 
with low SLA are detectable at canopy level. In general, as the 
vegetation type changed from heath on low nutrient soils, to 
forests in areas with the highest water and nutrient availability, 
sLAcs increased. This gradient was associated with a decrease 
in reflectance values. However, changes in the amount of vege- 
tation cover can also have an impact on reflectances at visible 
wavelengths (Huete, 1988; Gitelson et al., 1996). Therefore, the 
correlation between the range of SLAcs (from an average 5.00 
m2/kg in heathland areas, to 7.45 m2/kg in forest areas) and 
reflectance data may have been strengthened by the high 
reflectivity of soil at these wavelengths. 

With the LOPEX dataset, at wavelengths equivalent to both 
the green and red bands, there was no significant correlation 
between SLA and reflectance (Table 8). This may be because leaf 
surface characteristics of the sclerophyll vegetation in this study 
have a larger effect on reflectance than do those of the species 
used in the LOPEX dataset. This is consistent with the findings 
of Thomas and Barber (1974) who reported that leaf surface 
characteristics of Eucalyptus species can have a large impact 
on reflectance in the visible part of the spectrum. 

Refiectance In ths NIR Band 
The NIR band showed a positive correlation with SLAcs (Figure 
4c and Table 7). This is in accordance with the predicted 

TABLE 6. THE SLAcs OF THE VEGETATION TYPES ON THE LAMBERT PENINSULA 

s& Nutrient Water Site 
[rn2/lcg) Vegetation typet availabilitytt availabilityl? no. 

3.92 Heath ** 11 
4.27 Low woodland * * * 1 
5.13 Low woodland * ** 3 
5.16 Scrub-heath * * * 9 
5.19 Scrub-heath * ** 

* * * 
13 

5.29 Scrub-heath 5 
5.53 Closed scrub * ** 4 
6.56 Open forest * ** 2 
6.64 Open forest * ** 12 
6.81 Low closed forest ** *** 6 
7.00 Open forest **  *** 

** *** 
10 

7.39 Open forest 7 
10.32 Open forest *** *** 8 
17.15 Closed forest **** **** 14 

tSee Table 4. 
ttThe nutrient and water availability values are based on the values 
described in Chapman and Murphy (1989), i.e., extremely low = * and 
high = * * **. These values are provided as a guide only. 

trends, that SLA would be reduced by the presence of non-meta- 
bolic carbon compounds. A similar trend from heath vegeta- 
tion to open forest, noted for visible wavelengths, was apparent 
in the NIR data. Data for heathland vegetation had low S L A ~ ~  
values and low reflectances: open forest had higher sues and 
reflectances. 

It is possible that changes in w that are dependent on vege- 
tation type and, therefore, related to changes in SLA, may contrib- 
ute to changes in the reflectance values that were found. The 
relationship between LPJ and reflectance has been the subject of 
numerous studies using field measurements and remotely 
sensed data, simulation studies to model reflectance values, and 
laboratory measurement of leaf reflectance. In laboratory stud- 
ies, Yoder and Waring (1994) found that the dominant change in 
reflectance spectra from canopies of different w s  was an 
increase in NIR reflectance for their high w canopy. Using field 
measurements and remotely sensed data, Spanner et al. (1990) 
reported a strong correlation between w and reflectance in the 
NIR region, for stands of high (89 percent) canopy closure. Devia- 
tions from the relationship occurred in stands with less com- 
plete canopy closure. The present study, using S& measured 
directly for both overstory and understory species in the field, 
has shown a high correlation between S L A ~ ~  and NIR across a 
variety of different canopy closures. 

With the LOPEX dataset, at wavelengths equivalent to the 
NIR band, there was a weak positive correlation with SLA (Table 
8). This is likely to be due to interdependencies between SLA 
and LAI in the field, which have been lost when a stack of ten 
leaves have been used for laboratory measurements. 

R e h t a m  in the MIR2 Band 
A strong negative correlation was found between MIRZ and 
s& (Figure 4d and Table 7). This is contrary to the trend that 
would be expected if leaf modifications associated with SLA 
were the only contributing factors but, because leaf water con- 
tent affects reflectance at this wavelength, it was expected. 

TABLE 7. THE RELATIONSHIP BETWEEN S k  AND lNDlVlOUAL BAND 
REFLECTANCE 

Correlation 
Band Regression equation coefficient (R2) 

Green Y = 0.243X-0.198 0.64 
Red Y = 0.248e-0,086 0.87 
NIR Y = 0.128Ln(X) + 0.116 0.58 
MIRl Y = 0.566X-0.274 0.26 
MIR2 Y = 0.741X-0.792 0.63 



TABLE 8. COMPARISON OF THE RELATIONSHIP BETWEEN SLA AND RERECTANCE 
FOR THE FIELD AND LOPEX DATA 0.2 . 
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High water availability is associated with higher SLA, but an 
increase in leaf water content will decrease reflectance. 

Finally, with the LOPEX dataset, a weak positive correlation 
was observed between reflectance at wavelengths equivalent 
to MIRP (compared to the strong negative correlation in the field 
data) (Table 8). The positive correlation is predicted from the 
leaf characteristics. The effect of leaf water content, important 
in the field, would be less important in laboratory 
measurements. 

0 2 4 6 8 10 12 14 16 18 

S h s  

(a) 

Relationships between and Vegetation Indices 
The relationships between red, NIR, and MIRZ reflectance and 
SLAcs prompted the calculation of a new vegetation ratio, 
called in this study, specific leaf area vegetation index (SLAW), 
with the equation 
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Red + MIRZ ' 
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The MIRz band was included to supplement the relationship 
between red and NIR that forms the underlying principle of 
most vegetation indices. NIR reflectance forms the numerator 
because, when NIR reflectance is low (associated with low SLA), 
low values of SLAW will be obtained, and, similarly, red and 
MIRZ reflectances are included in the denominator because 
high reflectance values at these wavelengths are associated 
with low SLA values. 

All of the vegetation indices examined were strongly posi- 
tively correlated with Sues (Table 9). Figures 5a to 5d show the 
correlations between RVI, SARVI2, SLAVI, and NDVI and SLAcs. 
The other vegetation indices listed in Table 9 provided no 
meaningful improvements on these. 

This result was expected because numerous studies have 
linked vegetation indices to a number of different plant bio- 
physical and biochemical parameters. For example, in an early 
study, Peterson et al. (1987) reported statistically significant 
relationships between LA1 and the ratio NIRIred, for 18 conifer- 
ous stands. More recently, Yoder and Waring (1994), using 
"miniature" canopies, reported correlations between canopy 
reflectance properties using NDVI and both LA1 and fPAR (R2 
= 0.36 and R2 = 0.60, respectively). Using the SAIL (scattering 

TABLE 9. THE RELATIONSHIP BETWEEN %AcS AND THE VEGETATION INDICES IN 
THIS STUDY 

0 2 4 6 8 10 12 14 16 18 

S h s  

(b) 

0.5 

- -  

Vegetation Correlation 
index Regression equation coefficient (R2) 

0 .4  

RVI Y = 0.308X + 0.252 0.91 
SARVIZ Y = 0.564Ln(X) - 0.662 0.89 
SLAW Y = 1.368Ln(X) - 1.373 0.84 
NDVI Y = 0.363Ln(X) - 0.308 0.83 
SAW Y = 0.524Ln(X) - 0.430 0.82 
PVI Y = 36.962Ln(X) - 35.535 0.76 
GNDVI Y = 0.233Ln(X) - 0.088 0.74 
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Figure 4. The relationship between S h s  and (a) green, (b) 
red, (c) N I R ,  and (d) MIR2 reflectance. 
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from arbitrarily inclined leaves) model, van Leeuwen and 
Huete (1996) examined relationships between LA1 and SAW, 
and using the same model, Huemmrich and Goward (1997) 
modeled relationships between  PAR and NDVI. 

Vegetation properties frequently covary in natural vegeta- 
tion, so a vegetation index that correlates well with one prop- 
erty would be expected to correlate with others. In particular, 
Pierce et al. (1994) report relationships between w and both 
canopy-average SLA and canopy-average leaf nitrogen, and 
Reich et al. (1997) found relationships between SLA and net 
photosynthesis and leaf nitrogen concentration. 

The vegetation index with the highest correlation coeffi- 
cient was the ratio vegetation index (RVI) which had a linear 
relationship with S-. W i l e  this relationship should prove 
useful in predicting SLA on the same satellite scene, the simple 
ratio nature of the RVI does not transfer well to satellite scenes 
for different areas, or different times (Lawrence and Ripple, 
1998). For a more widely applicable vegetation index, it is nec- 
essary to look at indices such as the normalized difference vege- 
tation index (NDVI) or the soil and atmosphere resistant 
vegetation index (SARVIP). Based on the vegetation index 
reviews of Lyon et al. (1998), NDVI is the most versatile and 
robust of the vegetation indices. However, Huete et al. (1997) 
suggest that SARVI2 may be preferable because it is more sensi- 
tive to changes in NIR than NDVI, and it reduces the effects of 
soil background and atmospheric path radiance. SARVI2 
showed a higher correlation with S L k s  than did NDm, but 
there was little difference between the two. Unfortunately, 
these two vegetation indices, but not RVI, saturate at high SLA 
values, which will reduce their usefulness for estimating can- 
opy SLA. 

The relationships shown in Figures 5a to 5d could be used 
to predict SLAcs for other areas of the same satellite scene 
according to the equations in Table 10. These equations are 
derived by plotting S L A ~ ~  as the dependent variable against the 
relevyt vegetation index and using the regression equation to 
form a predictive equation. For a meaningful comparison of 
these vegetation indices, it would be necessary to test pre- 
dictive equations based on each index on a different scene, or 
different vegetation types. 

6 

5 

4 

$, 3.. 

2 

1 

0 ,  

Concluding Remarks 
SLA is an important plant attribute. There would be much to be 
gained through the remote estimation of SLA, and the underly- 
ing plant characteristics which lead to variations in SLA would 
indicate that remote estimation is feasible. The field-based 
results of this study indicate that it is possible to estimate S w s  
over a range of vegetation types using low spectral resolution 
Landsat TM data. 

A strong correlation was found between reflectance in the 
green, red, NIR, and M L R ~  bands and S w s .  A strong correlation 
was also found to exist between s w s  and the vegetation indi- 
ces used in this study. This enabled the construction of inverti- 
ble empirical models that would facilitate estimation of S L ~ S  
from low spectral resolution Landsat TM data. 

The cause of lack of correlation between sLA and labora- 
tory measurements of reflectance in the LOPEX dataset remains 
unclear. The construction of a leaf optical properties dataset for 
sclerophyllous vegetation of the type used in this study may 
provide further clarification of these results. 

.. 

.. 

.. 
y = 0.308x+ 0.252 

.. R2 = 0.910 

TABLE 10. EQUATIONS FOR PREDICTING SLAcs FROM VEGETATION (NOICES 

Vegetation index Predictive equation 

RVI S& = 2.954 (RVI) - 0.125 
SARVI2 SLA~. = 3.43gel.571lSARW) 
SLAVI SLAcs = 1.066e1~Z68(SLAw 
NDVI S& = 2.766e2.293(Nom) 
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Figure 5. The relationship between SUcs and (a) Rvl, (b) 
SARVIP, (c) SLAVI, and (d) NDVI. 



It is probable that environmental factors have enhancea 
the correlations found in this study. Obvious relationships 
include 

soil conditions, which influence both plant species composition 
(and, therefore, SLA) and reflectivity at visible wavelengths; 
water availability, which influences both plant species composi- 
tion (and, therefore, SLA) and reflectivity at mid-infrared wave- 
lengths; and 
the interrelationship between canopy properties such as w, 
  PAR, leaf nitrogen, and SLA, which influence reflectivity at 
near-infrared wavelengths. 

However, the vegetation characteristics resulting from these 
environmental factors cannot be divorced from each other in  
the natural vegetation that ecological models seek to simulate. 
The role of LAI in  these results is uncertain, although the 
strength of the correlations (being greater than is typically 
found for LA1 alone) suggests that a relationship between SLA 
and reflectance does exist i n  its own right. Future remote sens- 
ing studies focusing on either SLA or LA1 must endeavor to 
account for both SLA and LAI. 

Further work on heterogeneous stands is required. Such 
stands not only contain multiple species, and therefore arange 
of SLAS, but are also often of a complex structure, for example, 
with the presence of both an  overstory and an  understory. This 
study is one of few that have examined the potential of estimat- 
ing SLA using remotely sensed data. Given the importance of 
this parameter in ecological and biogeochemical models, and 
as a plant attribute in  its own right, further such studies are 
needed which will supplement these results. 
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