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Abstract 
Sets of spectral, spectral-spatial, textural, and geomor- 
phometric variables derived fram high spatial resolution 
Compact Airborne Spectrographic Imager (CASI) and elevation 
data are tested to determine their ability to discriminate 
landscape-scale forest ecosystem classes for a study area in 
northern Ontario, Canada. First, linear discriminant analysis 
for various spectral and spectral-spatial variables indicated 
that a spatial resolution of approximately 6 m was optimal 
for discriminating six landscape-scale forest ecosystem classes. 
Second, texture features, using second-order spatial statistics, 
significantly improved discrimination of the classes over the 
original reflectance data. Finally, addition of terrain descriptors 
improved discrimination of the six forest ecosystem classes. It 
has been demonstrated that, in a low- to moderate-relief boreal 
environment, addition of textural and terrain variables to high- 
resolution CASI reflectance data provides improved discrim- 
ination of forest ecosystem classes. 

Introduction 
In an ecosystem approach to land classification, coherent ter- 
rain units may be defined by a complex of factors including 
vegetation, landforms, and drainage. Because forest ecosystems 
in northwestern Ontario, Canada are defined, in part, by physi- 
ography, it seems logical that incorporation of terrain variables 
with remote sensing data would improve mapping of forest 
ecosystems at landscape scales. It has been demonstrated that 
geomorphometric variables (e.g., elevation, gradient) provide 
additional information for discriminating land-cover classes in 
combination with satellite remote sensing data in high-relief 
environments (e.g., Frank, 1988; Peddle and Franklin, 1991; 
Franklin et al., 1994; Michaelsen et al., 1994; Florinsky and 
Kuryakova, 1996; Gong et al., 1996; Ekstrand, 1996; Florinsky, 
1998; Vogelman et al., 1998). However, it is not clear whether 
these terrain variables contribute additional information for 
discriminating forest ecosystem classes in a low- to moderate- 
relief boreal environment when combined with high-resolu- 
tion remote sensing data. 

The Forest Ecosystem Classification (FEC) for northwestern 
Ontario represents an ecologically based classification which 
incorporates physiographic and biotic elements of the forest 
ecosystem [Sims et al., 1989). The FTC framework incorporates 
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those components of forest site that contribute to forest devel- 
opment (i.e., canopy and understory vegetation, soils, land- 
form, general climatic regime, and regional physiography) 
(Sims and Uhlig, 1992). FECs were developed for stand-level 
(i.e., < 10 hectares) application to provide information regard- 
ing vegetation, soil, and site conditions. However, this detailed 
ecosystem classification is difficult to implement for large 
tracts of boreal forest that are characteristic of much of north- 
western Ontario, Canada. Because the FEC framework is some- 
what hierarchical, field-level units can be aggregated to create 
coarser resolution ecosystem units based on moisture and 
nutrient regimes (Racey et al., 1989). Essentially, arange of for- 
est ecosystem classes can be derived that account for a range of 
scales of application, thereby creating an ecosystem classifica- 
tion that is "mappable" using spectral and terrain variables, 
also acquired at arange of scales. Thus, integration of appropri- 
ately "scaled" and spatially processed georeferenced remote 
sensing data and spatially geocoded terrain information offers 
potential for assisting in the analysis of large areas of forest for 
identification of relevant landscape-scale ecosystem classes, 
particularly within the context of a hierarchical classification 
scheme. 

In digital image classification of remote sensing data, deci- 
sion rules based on spectral reflectance or radiance of land- 
scape elements are applied to image data to define ecological 
units. It may be appropriate to incorporate terrain attributes 
(e.g., elevation, gradient, local reliefl into the statistical deci- 
sion rules to classify ecological units using remote sensing data 
(Moore et al., 19911. At landscape scales, the primary causes 
which determine the differences between ecosystem units are 
topographic position, parent material, and slope, aspect, and 
inclination with controlling factors being moisture regime, soil 
fertility, microclimate, and snow depth (Hills and Pierpoint, 
1960). At the stand level, these causes and controlling factors 
are important along with disturbance history (Damman, 1979). 
It therefore seems reasonable to expect digital terrain descrip- 
tors (e.g., elevation, gradient, aspect) to assist in the discrimina- 
tion of landscape-scale forest ecosystem classes when inte- 
grated with spectral data (Florinsky and Kuryakova, 1996; Flo- 
rinsky, 1998). 

Texture, or the intrinsic spatial variability of tone, is recog- 
nized as an important interpretive tool for discriminating dif- 
ferent land-cover and land-use types and is a function of spatial 
resolution or scale. This concept is dependent on three vari- 
ables: (I) size of the area being investigated/processed, (2) the 
relative sizes of the discrete tonal features, and (3) spatial dis- 
tribution of discrete tonal features (Baraldi and Parmiggiani, 
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1995). A texture field within an image is described as homoge- 
neous if the spatial arrangement of pixel values are more homo- 
geneous (as a unit) within than between texture fields (Barber 
et al., 1993). It has been demonstrated that texture transforms 
have a role in image analysis for forestry by improving the 
accuracy of the interpretation of forest types and conditions 
(Wilson, 1996; Cain et al., 1997; Wulder et al., 1998). For 
instance, stand structural characteristics (e.g., diameter at 
breast height (dbh), crown diameter, density, basal area, and 
age) have been found to be highly correlated with texture 
images generated from SPOT panchromatic data (Cohen and 
Spies, 1992). Texture also appears to be more evident at high 
spatial resolutions (e.g., < lo  m) as stand structural characteris- 
tics tend to, at these levels, dominate the scene (Yuan et al., 
1991; Franklin and McDermid, 1993). Ecologists are also 
examining these texture measures for development as "pattern 
indices" for ecological data sets (Musick and Grover, 1990; 
Cain et al., 1997). In this study, the gray-level co-occurrence 
matrix (GLCM) statistical method is used to generate texture fea- 
tures from Compact Airborne Spectographic Imager (CASI) data. 

It has been proposed that landscape-scale site classifica- 
tion can provide the basis for detailed applications and plan- 
ning, especially when spatial analysis and modeling tech- 
niques are applied using remote sensing and other spatial data 
in conjunction with field-oriented classifications (Sims et al., 
1994). It is recognized that many ecological and timber 
resources cannot be directly sensed using remotely sensed 
data, but must be modeled or derived from other sources of pri- 
mary data. This is a natural conclusion based on a holistic eco- 
system concept. The approach taken in this study is to collect 
high-resolution remote sensing data, derive appropriately 
scaled and processed images for different forest ecosystems, 
and integrate these features with terrain descriptors derived for 
landscape-scale analysis. It is suggested that, by deriving opti- 
mal spectral, textural, and terrain descriptors of the vegetation 
and landscape, discrimination of landscape-scale forest ecosys- 
tems can be optimized. 

The objective of this study is to determine the extent to 
which texture and terrain variables can improve forest ecosys- 
tem mapping within the boreal forest of northwestern Ontario. 
An integrated dataset is developed to model forest ecosystems 
that incorporates multi-spatial resolution remote sensing data, 
texture variables, and terrain variables. High-resolution CASI 
data are spatially averaged to generate "optimally" and vari- 
ously scaled remote sensing data. CASI spectral and spatial 
variables are used in combination with texture variables (mean, 
contrast, and correlation) and geomorphometric variables (ele- 
vation, local relief, gradient) to test the discriminability of for- 
est ecosystems at a landscape scale (1:20,000). 

Study Area Description 
The study site is located approximately 100 km north of Thun- 
der Bay, Ontario within the Central Plateau section of the 
Boreal Forest Region (Rowe, 1972). The area consists of a 
diverse mosaic of forest-stand types with various soil and land- 
form conditions, primarily of glacial origin. Trembling aspen 
(Populus tremuloides Michx.) and black spruce (Picea mari- 
ana (Mill.) BSP.) are dominant with jack pine (Pinus banksiana 
Lamb.), white spruce (Picea glauca (Moench) A. Voss), balsam 
fir (Abies balsamea (L.) Mill.), white birch (Betula papyrifera 
Marsh.), white cedar (Thuja occidentalis L.), and tamarack 
(Lnrixlaricina (Du Roi) K. Koch) occurring in various mixtures. 
Forest-stand overstories are monospecific or mixed, and 
understories range from shrub- and/or herb-rich to poor (Walsh 
et al., 1994). The FEC applicable to the study area is the North- 
western Ontario FEC (Sims et al., 1989). The ecosystem units 
derived from the Nwo FEC for the Rinker Lake area and used in 
this study are listed in Table 1. 

The physiography of the study site is bedrock-controlled 

TABLE 1. R C  VEGETATION TYPES (V-TYPES) FOR THE RINKER LAKE STUDY AREA 

V-Type* FEC Description 

Aspen-Dominated Hardwood and Mixedwood 
V5 Aspen Hardwood 
V6 Trembling Aspen (White Birch)-Balsam Fir/ 

Mountain Maple 
V7 Trembling Aspen-Balsam FirIBalsam Fir 

Shrub 
V8 Trembling Aspen (White Birch)/Mountain 

Maple 
V9 Trembling Aspen Mixedwood 
V10 Trembling Aspen-Black Spruce-Jack 

PineILow Shrub 

White SprucelBalsam Fir Conifer and Mixedwood 
V14 Balsam Fir Mixedwood 
V15 White Spruce Mixedwood 
V16 Balsam Fir-White Spruce Mixedwoodl 

Feathermoss 
V24 White Spruce-Balsam FirIShrub Rich 
V25 White Spruce-Balsam FirIFeathermoss 

Cedar Mixedwood 
V2 2 Cedar (inc. Mixedwood)/Speckled Alder1 

Sphagnum 

Upland Black SpruceIJack Pine 
V31 Black spruce-Jack PineITall Shrub1 

Feathermoss 
V32 Jack Pine-Black SpruceIEricaceous Shrub1 

Feathermoss 
V3 3 Black SpruceIFeathermoss 

Lowland Black Spruce 
V34 Black SpruceILabrador Tea/Feathermoss 

(Sphagnum) 
V35 Black SpruceISpeckled AlderISphagnum 
V36 Black SprucelBunchberrylSphagnum 

[Feathermoss) 
V3 7 Black Spruce/Ericaceous ShrubISphagnum 

Wetland Black Spruce 
V38 Black Spruce/Leatherleaf/Sphagnum 

with elevations ranging from 430 m to 530 m. The study site 
lies within the Severn Upland physiographic unit, in the James 
Bay Region of the Precambrian Shield (Mollard and Mollard, 
1981). The glacial deposits in the area originate from the Wis- 
consinan glaciation. The predominant ice flow was from the 
northeast to southwest. Glacial drift is generally less than 3 m 
with till being the oldest and most widespread sediment in the 
area. This till consists of a predominantly sand to silty-sand 
matrix with a coarse fragment content ranging from less than 5 
percent to greater than 30 percent (by volume) (Walsh et a]., 
1994). The glaciofluvial deposits of eskers, crevasse fills, 
kames, and kame terraces have moderately well- to well-sorted 
sand and gravelly sand textures. Mineral soils in the area are 
moderately deep (60 to 100 cm) to deep (>I00 cm), with signifi- 
cant amounts of coarse fragments, while very thin soils (< 20 
cm), exposed bedrock, and organic soils occur to a lesser extent 
throughout the study area (Walsh et al., 1994). 

Data Description 
Ground Data Collection 
Ground data were collected using a methodology devised by 
Forestry Canada for characterizingvegetation Types (V-Types) 
within a forest stand (McLean and Uhlig, 1987). FEC plots are 
10- by 10-m quadrats where V-Types are determined based on 
the presence and abundance of canopy and secondary trees; 
high, low, and dwarf shrubs; broadleaf herbs; and mosses and 
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lichens. Here, detailed FEC plot data were collected for 71 for- 
ested sites within the study area during the periods 2 1  June to 15 
July 1993 and 04 to 15 July 1994. Data collected for each 10- by 
10-m sample plot included (1) differential Global Positioning 
System (GPS) data, (2) vegetation data (species and percent 
cover for tree, shrub, and herb layers), (3) mensuration data 
(age, height, density, diameter breast height (dbh)), and (4) can- 
opy data (visual estimates of mean maximum crown diameter 
(MMCD)). Percent cover for each species was determined by 
visual estimation of (1) dominant, main canopy, and secondary 
trees; (2) high, low, and dwarf shrubs; (3) broadleaf herbs; and 
(4) mosses and lichens. In total, plot data were collected for 25 
of the 38 V-Types within the NWO FEC. Of the 13 V-Types not 
sampled, six of these were characteristics of the Great Lakes - 
St. Lawrence forest to the south of the study site, four were too 
small in extent to be sampled effectively, and three did not 
occur within the study site (Kalnins et al., 1994). In 1994 and 
1995, a series of transects was traversed through selected forest 
stands in order to collect additional V-Type data. These sam- 
ples of V-Type characterization only, occurred at fixed inter- 
vals of 50 m along predetermined transects. 

Compact Airborne Spectmgraphic Imager (Reflectance) Data 
The CASI is a visiblelnear-infrared pushbroom imaging spectro- 
graph with a reflection grating and a two-dimensional CCD 
solid-state array measuring 512 by 288 pixels. The specifica- 
tions of the CASI are outlined in Table 2. 

CASI data were acquired from a Piper Navajo Chieftan air- 
craft on 30 July 1993 at an altitude of 2630 m above ground 
level (AGL) (Kalnins et al., 1994). To minimize bidirectional 
reflectance (BRF) and effectively cover the study area, flight 
lines were oriented parallel to the solar azimuth (i.e., away from 
the sun], restricting data collection to a two-hour time window 
(10:30 a.m. to 12:30 p. m. local time). Flight lines were flown 
over the study site at a ground speed of 149 knots (76.7 meters1 
second) heading 300 degrees true with the sensor pointing at 
nadir. This provided an integration time of 70 milliseconds. 
The CASI data were collected in nine spectral bands (Table 3) 
and possessed a spatial resolution of 3.18 m in the cross-track 
direction and 5.36 m in the along-track direction. 

CASI data were converted to radiance using software devel- 
oped at the Center for Research in Earth and Space Technolo- 
gies (c~ESTech) and the algorithms of Baby and Soffer (1992). 
This conversion was applied in order to eliminate artifacts pres- 
ent in the imagery and to convert digital numbers from arbitrary 
values to physical units of radiance (Shepherd, 1994). The data 
were then converted to reflectance to eliminate atmospheric 

TABLE 2. DESCRIPTION OF THE COMPACT AIRBORNE SPECTROGRAPHIC IMAGER 
(CASI) (ADAPTED FROM GOWER ETAL. (1992)). 

Parameter Description 

Spectral Coverage 418 nm to 926 nm using 288 detectors; sam- 
pling interval 1.8 nm; spectral resolution 
2.9 nm 

Spectral Mode 39 spectra of the full 418 nm to 926 nm range 
are recorded, with 2.9 nm resolution, 
£rom 39 different directions across the 
swath; a full-resolution image at a prede- 
termined wavelength is also recorded to 
assist in track recovery 

Spatial Coverage 35.5"swath, with standard lens; single camera 
gives 612 pixels; sampling interval 1.2 
mrad; spatial resolution 1.6 mrad 

spectral pixels are grouped to form up to 15 
bands (512 pixels wide); band width and 
spectral position are under software control; 
the number of bands governs the integra- 
tion time 

Spatial Mode 

TABLE 3. CASl IMAGING MODE WAVELENGTHS 

Feature Number 
Center 

Wavelength (nm) 
Bandwidth 

(nm) 

31.18 
20.80 
20.88 
20.94 
15.60 
10.22 

6.62 
10.24 
28.44 

Band Range 
(nm) 

434.72-465.90 
539.07-559.87 
580.06-600.94 
623.01-643.95 
662.50-678.10 
734.61-744.83 
743.64-750.26 
785.26-795.50 
859.63-888.07 

effects and compensate for changes in solar illumination dur- 
ing image acquisition. Calibration to reflectance provides a 
basis for comparison of reflectance values between adjacent 
flight lines and between different altitudes. A hybrid model 
was used to perform this calibration using pseudoinvariant 
features (PIFS) and an on-board downwelling irradiance sensor 
(Incident Light Probe (ILP)) (Shepherd, 1994; Shepherd et al., 
1995). The CASI data are calibrated to reflectance (%'-bit real 
numbers) but stored as 16-bit integers for more efficient storage 
and data processing. The relationship between CAsI digital 
number (DN] and reflectance is Reflectance (R) = (CASI 
DN)IO-~. 

Digital Elevation Data 
The DEM for the study area was produced by the Department of 
Natural Resources-Forestry Canada. This DEM was generated at 
a 20-mgrid spacing using the ANLJDEM procedure (Hutchinson, 
1989; Mackey eta]., 1994) based on digital topographic data 
(contours and streamline data) from the 1:20,000-scale Ontario 
Basic Mapping (OBM) Series. 

Georeferencing of CASl Data 
A georeferenced database for the study area was developed 
incorporating spectral, spectral-spatial, texture, and terrain 
variables. A common spatial resolution of 4 m by 4 m was 
selected for this database, incorporating CASI data as well as 
the 20-m DEM. ~~slref lectance data were registered to a Landsat 
TM scene that was resampled to 4 m and georeferenced to the 
Universal Transverse Mercator (UTM) projection at a 4-m pixel 
spacing. To register the CASI data to a 4-m pixel within the 
georeferenced dataset, a fourth- or fifth-order polynomial was 
applied to each flight line to model the distortions inherent in 
each flight line. Using such high-order polynomials is neces- 
sary for correcting distortions caused by aircraft movement 
and orientation. At the same time, it is understood that using 
polynomials of such high order can also generate significant 
distortions in some parts of the image. To minimize this poten- 
tial, care was taken to select a large number of control points 
that were well distributed throughout each flight line. The data 
were then resampled using a nearest-neighbor algorithm. Al- 
though the CASI data had been corrected for aircraft roll, regis- 
tration errors persisted (e.g., mean residuals in the x and y 
direction of 3 and 7 pixels, respectively). In all, five USI flight 
lines were georeferenced and combined with Landsat TM data 
to form a mosaic covering the entire study area (Figure 1). 

CASl Spectral Feature Selection 
Band l(435 to 466 nm) was eliminated from analysis due to 
noise and poor dynamic range. Also, it was observed that 
Bands 8 (785 to 795 nm) and 9 (860 to 888 nm) suffered from 
poor focus and, therefore, were omitted from this analysis. To 
reduce the data dimensionality of the remaining six features of 
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I Figure 1. c ~ s l  and Landsat TM mosaic for the Rinker Lake study site (pixel size = 4 m). I 

CASI data, the Jeffries-Matusita (J-M) distance, a statistical sepa- 
rability measure, was used to evaluate candidate feature sub- 
sets. J-M distance is a measure of the average difference between 
the two-class density functions and ranges between 0 and 2 
(Swain and Davis, 1978). J-M distance was selected because it, 
along with transformed divergence, produced superior separa- 
bility results for image classification over Bhattacharyya dis- 
tance and simple divergence (Mausel et al., 1990). 

Feature selection was applied to the original CASI data 
because spectral-spatial and texture features would be gener- 
ated from these original CASI data. In order to keep the number 
of derived variables to a minimum (i.e., spectral-spatial and tex- 
ture features), the dimensionality of the original dataset was re- 
duced. Also, because linear discriminant analysis is affected 
by the number of variables, it was desirable to maintain a mini- 
mum number of variables. 

cASI features were selected using the following procedure 
to collect reflectance data for the six landscape-scale ecosys- 
tem classes (Treitz et al., 1996): 

(1) FEC plots were located on the georeferenced imagery using GPS 
coordinates. For each landscape-scale forest ecosystem class, 

ten calibration sites (consisting of 25 pixels each) were used 
to calculate the mean and covariance for each class. 

(2) The number of CASI features was selected from one to six. 
(3) Feature subsets of the specified number of C A ~ I  features (i.e., 

1,2,3,4,5, or 6) were determined. For each candidate feature 
subset, the average J-M distance was calculated for each land- 
scape-scale class pair. 

(4) This process was repeated for each possible combination of 
the specified number of CASI features identified in Step 2, 
and the average J-M distance for each feature subset was 
tracked. 

(5) The maximum of the average J-M distance was used to select 
the best feature subset for the given number of features 
desired. 

(6) Steps 2 to 5 were repeated for different numbers of fea- 
tures. These results are reported in Table 4. 

J-M distances greater than 1.9 for a two-class density func- 
tion indicate good separability between those two classes. Val- 
ues ranging from 1.0 to 1.9 indicate the classes (or subset of 
classes) are separable to some extent. The J-M distances pre- 
sented in Table 4 indicate the maximum average pairwise J-M 

308 March 2000 PHOTOGRAMMETRIC ENGINEERING 81 REMOTE SENSING 



TABLE 4. FEATURE SELECTION BASED ON JEFFRIES-MATUSITA (J-M) DISTANCE 

Features Maximum 
Number of J-M Distance 
Features 2 3 4 5 6 7  Average* 

1 J  0.591 
2 J  J  0.877 
3 J  J  J  0.987 
4 J  J  J  J  1.081 
5 J  J J J J  1.136 
6 J J J J J J  1.165 

distances for the specified number of CASI features and six forest 
ecosystem classes. Based on this analysis, CASI spectral features 
(variables) 3,5, and 7 were selected for spatial averaging to 
"optimal" spatial resolutions/scales, texture analysis, and inte- 
gration with terrain variables. Although all six features pro- 
vided the greatest J-M distance (Table 4), it was decided that the 
three features providing the highest J-M distance would be 
selected, in order to maximize J- distance while maintaining a 
relatively small number of variables (i.e., for linear discrimi- 
nant analysis). Each of these features represent important 
"spectral regions" of the reflectance curve (green peak reflect- 
ance, chlorophyll well, and infrared reflectance). It was antici- 
pated that features representative of these regions would also 
provide the best features for scaling, texture analysis, and inte- 
gration with terrain features. 

SpectraCSpatial Features 
Specific spatial resolutions for visible and near-infrared 
reflectance data were identified for the six landscape-scale 
ecosystem classes based on semivariogram analysis of sample 
CASI data collected at 0.70- by 5.36-m spatial resolution (600 
m AGL) (Treitz, 1997) (Table 5). Based on the semivariogram 
analysis of the sample data, a series of spectral-spatial fea- 
tures were derived from the 4-m CASI data (features 3,5, and 
7) using a technique of non-overlapping spatial averaging. 
With this technique, the mean reflectance within a non-over- 
lapping square window is calculated and assigned to an out- 
put image. The input window is then moved a distance 
equivalent to the window size and a new mean reflectance 
value is calculated. This process is repeated over the entire 
image. The 4-m data approximate the lower limits of "opti- 
mal" spatial resolutions estimated for specific forest ecosys- 
tem classes. For example, the spatial resolution of the CASI 

Landscape ~ e v e l  
Ecosystem Classes* 

CASI Spectral Variable Spatial Resolution 1 2 3 4 5 6 

CASI (580-601 nm) 4 meters 
5 meters 

J  J  

6 meters 
J  J  

CASI (663-678 nm) 4 meters 
J  J  

5 meters 
J J  

6 meters 
J  J 

CASI (744-750 nm) 5 meters 
6 meters 

J  J  

7 meters 
J J  

J  J  
*1. Aspen-Dominated Hardwood and Mixedwood; 2. White Spruce1 
Balsam Fir Conifer and Mixedwood; 3. Cedar Mixedwood; 4. Upland 
Black SpruceIJack Pine; 5. Lowland Black Spruce; and 6. Wetland 
Black Spruce 

data used in this analysis (i.e., 3.18 m by 5.36 m or 17 m2 and 
subsequently resampled to 4 m by 4 m or 16 m2 during geore- 
ferencing) approximates the "optimal" spatial resolution esti- 
mated from CASI data collected at 600 m AGL (i.e., 0.7 m by 
5.36 m or 16 m2) for LowlandIWetland Black Spruce using 
semivariogram analysis. "Optimal" spatial resolutions often 
differed between landscape-scale ecosystem classes and 
between visible and near infrared wavelengths. 

To simulate datasets at 5,6, and 7 meters spatial resolution, 
a one-meter database was developed from the original CASI 
data, meaning that the original database of 4-m spatial resolu- 
tion (3500 pixels by 3000 lines) was written to a database of 
14,000 pixels by 12,000 lines. C ~ s ~ B a n d s  3 and 5 were then spa- 
tially averaged to 5 m and 6 m while CASI Band 7 was averaged 
to 5-, 6-, and 7-m spatial resolutions. These spatial resolutions 
reflect the results of the semivariogram analysis, with the opti- 
mal resolutions being larger for the near-infrared data than for 
the visible (Treitz, 1997). 

Although it is unclear how closely spatial averaging simu- 
lates multi-spatial resolution remote sensing data, it has been 
demonstrated to be superior to algorithms such as cubic convo- 
lution and bilinear interpolation for upscaling spectral signals 
(Hay et al., 1997). Non-overlapping spatial averaging assumes 
that smaller-scale systems behave similarly to the average of 
larger-scale systems. However, differing structural patterns 
occur within the landscape at various scales and do not neces- 
sarily interact in a linear fashion. The 5-, 6-, and 7-m CASI data- 
sets were then georeferenced to the 4-m dataset using a first- 
order polynomial and nearest-neighbor resampling algorithm. 
Sub-areas representing spatially averaged features for Band 7 
(744 to 750 nm) are presented in Figure 2. 

Texture Features 
Here, texture analysis is examined as an important contributor 
to scene information extraction. Texture may contain impor- 
tant information about the structural arrangement of surfaces 
and their relationships to the surrounding environment (Hara- 
lick et al., 1973). It has been shown that classification accura- 
cies are improved when texture features are incorporated into 
image classification (Peddle and Franklin, 1991; Barber et al., 
1993; Rotumo eta]., 1996). In this study, the gray-level co- 
occurrence matrix (GLCM) statistical method is used to generate 
texture features from the CAsI data. 

The GLCM method can be defined as a matrix of relative fre- 
quencies in which two neighboring pixels, separated by dis- 
tance Sand having an angular relationship a; occur on the 
image, one withgray tone i, and the other with gray tone j (Har- 
alick et al., 1973). The power of the GLCM approach is that it 
characterizes the spatial interrelationships of the gray tones in 
a textural pattern and can do so in a way that is invariant under 
monotonic gray-tone transformations. On the other hand, it does 
not capture the shape aspects of the tonal primitives and, there- 
fore, is not well-suited for textures composed of large-area 
primitives (Haralick 1979). Hence, this technique is suited to 
the CASI data analyzed in this study (i.e., L-resolution data as 
defined by Strahler et al., 1986). The objective of these statisti- 
cal approaches is to translate visual properties into quantita- 
tive descriptors in a manner that they can be used to discrimi- 
nate relevant land features using additional image processing 
techniques. 

GLCM analysis was performed on a 6-bit linear transforma- 
tion of the original 16-bit CASI data using measures of contrast, 
mean, and correlation. Quantization-level scaling is performed 
to increase computational efficiency during matrix calcula- 
tions. These analyses were performed on visible (580 to 601 
nm) and near-infrared (744 to 750 nm) data. Texture features 
(mean, contrast, and correlation) (Figure 3) based on GLCMs were 
generated using EASIIPACE software (PCI, 1997): i.e., 
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0 5000 10000 150002000025000 
CASl Reflectance (744 - 750 nm) Spatlal Resolution = 6 m 

0 50b0 10000 15000 20000 25000 
CASl ReReclance (744 - 750 nm) Spatid Resolution - 5 m 

CASl ReHectancs (744 - 750 nm) Spatla1 Resolullon - 7 m 

Figure 2. Spectral-spatial features for CASI Band 7 reflectance at different spatial resolutions (744 to 750 nm). 

Mean Correlation 

Contrast where 
Cij is the ijth entry of the co-occurrence matrix, 
n is the number of pixel pairs in the image at (6, 4, 
i is the gray-level intensity value of the ith reference row, 
j is the gray-level intensity value of the jth neighbor column, 
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Figure 3. Mean, contrast, and correlation texture features for CASI Band 7 (744 to 750 nm). 

pi is the mean of row i, 
pj is the mean of column j, 
q is the standard deviation of row i, and 
o;. is the standard deviation of column j. 

image (Haralick et al., 1973; Ulaby et al., 1986; Pultz and 
Brown, 1987). Contrast is a measure that is associated with the 
average gray-level difference between neighboring pixels and is 
sensitive to standard deviation but not mean [Barber. 19891. A 

~ l t h ~ ~ ~ h  these features measure the same characteristics low-contrast image results in a concentration of entries around 
of the data (i.e., texture), they are interpreted differently. The the diagonal of the GLCM and* consequently* alowvalue for the 
mean texture statistic incorporates both tone and texture infor- computed contrast statistic (Baraldi and Parmiggiani, 1995). 
mation. This is achieved by incorporating the gray level of the The correlation statistic is analogous to Pearson's product 
ith line of the matrix in the texture calculation. The contrast sta- moment correlation and is sensitive to the correlation between 
tistic is a measure of the amount of local variation present in an gray values and the probability density functions at each of the 

PHOTOGRAMMETRIC ENGINEERING 81 REMOTE SENSING March 2000 311 



gray-level pairs. The correlation texture statistic is sensitive to 
both mean and standard deviation (Barber, 1989). 

In generating each of these texture features, three parame- 
ters must be selected. These include (1) window size for which 
the co-occurrence matrix will be generated, (2) interpixel sam- 
pling distance, and (3) direction for pixel co-occurrence within 
the sampling window. For feature generation, an appropriate 
window size is one that is large enough so that a meaningful 
joint distribution of gray tones can be computed to characterize 
specific land covers, yet is small enough to minimize the tran- 
sitional effects of the texture calculation at boundaries between 
adjacent classes. Because the "optimal" spatial resolutions 
determined for the visible and near-infrared data were different 
(Treitz, 1997), a 5- by 5-pixel window was used for generating 
the GLCM for the visible data (580 to 601 nm) and a 7- by 7-pixel 
window for the near-infrared data (744 to 750 nm). These win- 
dow sizes were selected for application to the 2630-m AGL CASI 
data to account for the differences between the visible and 
near-infrared data and to generate a meaningful joint distribu- 
tion of gray tones. However, it must be noted that optimal tex- 
tural window operators were based on semivariogram analysis 
of CASI data collected at 600 m AGL, thereby possessing a spatial 
resolution of 0.73 m by 5.36 m (Treitz, 1997). These estimates 
portray smaller spatial dimensions than are used here for the 
2630-m AGL CASI data. It is accepted that the relationship 
between reflectances of the 600-m and 2630-m AGL CASI data is 
not likely to be linear. In this respect, based on semivariogram 
analysis of the 600-m AGL CASI data, the texture processing of 
the 2630-m AGL data addresses texture at a smaller scale than 
was observed in the 600-m AGL CASI data. 

The inter-pixel sampling distance (8) is selected based on 
the coarseness or fineness of the textures present in the image. 
For example, for fine-texture features, a short inter-pixel sarn- 
pling distance would be suitable, whereas a greater distance 
would be appropriate for coarse-textured images. However, 
because there are generally a variety of degrees of fineness and 
coarseness within an image, an inter-pixel sampling distance of 
one (8 = 1) is valid to characterize different degrees of texture. 

Haralick et al. (1973) proposed calculating second-order 
statistics for the co-occurrence matrix in four directions (a = 
O", 45", 90°, 135"). If the objective is to create invariant features 
after rotation, this method is appropriate (Vickers and Mod- 
estino, 1982). However, in a study by Franklin and Peddle 
(1989), it was observed that individual texture orientations 
produced higher class accuracies than did average texture mea- 
sures using the four orientations. In this study, one directional 
measure was used (i.e., a = 0). Here, the evaluation of the GLCM 
technique is based on the discrimination of the six landscape- 
scale forest ecosystem classes from these texture features. Tex- 
ture features generated from the GLCM are classified individu- 
ally and in combination using a linear discriminant function. 

Geomorphometrlc Processing 
%O first-order derivatives of altitude (gradient and local relief) 
were derived from the elevation model. A gradient image por- 
trays the rate of maximum change in elevation between neigh- 
boring cells (0 to 90'). Degree gradient for any given cell in the 
matrix is calculated as the gradient of a plane formed by the vec- 
tors connecting the neighboring cells in a 3- by 3-cell window, 
where each cell contains an elevation value. The gradient 
image was derived using the algorithms implemented in ARC/ 
INFO (ESRI, 1996). To quantify the local variability in elevation 
and gradient, a map of local relief was generated by calculating 
the range of altitude within a 5- by 5-pixel moving window. 
This feature effectively portrays the maximum change in alti- 
tude within a 100- by 100-m (1-ha) area and represents a first- 
order statistical derivative of elevation. A sub-area depicting 
the three terrain features-elevation, gradient, and local 
relief-is presented in Figure 4. 

Forest Ecosystem Reflectance Data Collection 
For this study, detailed V-?lpes were aggregated to six land- 
scape-scale ecosystem classes that were present in the Rinker 
Lake Study Area (Table 1). Here, detailed V-Types were aggre- 
gated to coarser ecological units based on (1) "Treatment 
Units" (Racey et al., 1989) which are groupings determined by 
similar soil moisture and nutrient regimes and (2) observed 
vegetation associations in the field. Forest ecosystem plot data 
were then aggregated into the six landscape-scale forest eco- 
system classes. Based on this grouping, sites were located in the 
C A ~ I  image data. Only sites that could be accurately located, 
and fell within a relatively large homogeneous area, were 
selected for analysis. A sample consisting of 1500 calibration 
pixels and 1500 validation pixels (250 calibration and valida- 
tion pixels per sample for each of the six classes) was collected. 

Forest ecosystem plots were located on the georeferenced 
imagery using GPS coordinates. Due to the error observed in the 
registration process, these positions were checked against 
1:8,000-scale color-infrared photographs and distance and 
direction measurements used in the field. For each landscape- 
scale forest ecosystem class, 20 sites were located for a total of 
120 sites. For each site, a 20-by 20-m area, corresponding to 25 
pixels, was extracted from the CASI image dataset and used in 
the calculation of mean and covariance for each class. 

In cases where there were only a few forest stands of a par- 
ticular landscape-scale forest ecosystem class (i.e., cedar 
mixedwood and wetland black spruce), attempts were made to 
collect calibration and validation data from separate stands or 
from the same stand on different flight lines. When this was not 
possible, samples were taken from different locations within 
the stand. 

Unear Dlscrlmlnant Analysls (LDA) 
Linear discriminant analysis (LDA) procedures were applied 
within SYSTAT~" (SYSTAT Inc., 1992) to explore the relative 
discriminatory power of the (1) spectral-spatial, (2) texture, (3) 
terrain, and (4) combinations of spectral-spatial, texture, and 
terrain variables. According to Duda and Hart (1973), LDA does 
not have a rigorous requirement for an underlying statistical 
model. In this sense, LDA is not seriously affected by limited 
deviations from normality or limited inequality of variances 
(Davis, 1986). In this analysis, Fisher's method, which is based 
on a single within-groups covariance matrix derived from cali- 
bration data, is applied (SYSTAT Inc., 1992). This method first 
derives a transform that minimizes the ratio of the difference 
between group multivariate means and their within-group mul- 
tivariate variance. This transform is used to find a discriminant 
function as the orientation that optimizes the separability of 
classes while at the same time minimizing the internal spread 
of each individual class distribution (Tom and Miller, 1984). An 
input pixel is then assigned to a particular class based on its 
location along the discriminant function axis. Discriminant 
analysis as a classification technique has been shown to be less 
sensitive to the number of variables and deviations from the 
normal (Gaussian) distribution as opposed to other methods 
such as maximum likelihood (Tom and Miller, 1984). 

The variable sets used in this analysis are defined in Table 
6. The minimum number of variables for any trial was one, the 
maximum, nine. For each set of variables, calibration data were 
used to generate a discriminant function, which was then 
applied to the validation data to obtain individual and mean 
class accuracies. The Kappa coefficient ( K )  was calculated for 
the validation accuracies of each classification. The Kappa 
coefficient is a measure of agreement between the ground sam- 
ple classes and those derived through classification of spectral, 
spatial, texture, andlor terrain features. This measure accounts 
for all elements of the confusion matrix and excludes the agree- 
ments that occur by chance (Rosenfield and Fitzpatrick-Lins, 
1986). Difference-of-proportions tests (Freund and Simon, 
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Figure 4. Elevation, gradient, and local relief terrain variables for a sub-area of the Rinker Lake study site (pixel size = 
4 m). 

1992) were performed to determine the significance of the dif- 
ferences between classification accuracies for the various com- 
binations of input variables. 

Results 
The CASI 6-m dataset (SPAC) provided the highest accuracies 
among the spectral-spatial variables and were significantly 
greater than the 4-m data set (SPEB) (z = 3.88). The 6-m data 
(SPAC) also provided greater discrimination of the six land- 
scape-scale classes than did the "optimal" spatial resolution 

dataset (SPAA), the 5-m dataset (SPAB), and the 6-m and 7-m data- 
set (SPAD) (Table 7). 

Among the texture datasets, TEXF provides the highest clas- 
sification accuracy, significantly greater than TEXA (z = 3.47) 
and TEXC (z = 2-64), as well as all spectral-spatial and terrain 
feature datasets (Table 7). The texture dataset, TEXF, which 
incorporates six texture features, does not provide significant 
improvement in classification accuracy over TEXB, a three-tex- 
ture feature dataset (z = 0.87). Of the three-texture features 
tested, the mean-texture feature provides the greatest discrimi- 
nation, followed by contrast and correlation. 
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Variable Set Description 

Spectral 
SPEA 

Spectral-Spatial 
SPAA 

SPAB 

SPAC 

SPAD 
Texture 

TEXA 
TEXB 

TEXC 

TEXD 

TEXE 

TEXF 

Terrain 
DEM 
REL 

GRAD 
TERA 
TERB 

Integrated 
INTA 
INTB 
INTC 

CASI Bands 3, 5, 7 

Optimal Spatial Resolutions by class (4m, 5m, 
6m and 7m) for CASI Bands 3, 5 and 7 

CASI Bands 3, 5, and 7 at 5 meter spatial 
resolution 

CASI Bands 3, 5, and 7 at 6 meter spatial 
resolution 

CASI Bands 3, 5 (6m) and Band 7 (7m) 

Texture Statistics: Mean-Bands 3 and 7 
Texture Statistics: Mean-Bands 3 and 7; Con- 

trast-Band 7 
Texture Statistics: Mean-Bands 3 and 7; Cor- 

relation-Band 7 
Texture Statistics: Mean-Bands 3 and 7; Con- 

trast and Correlation-Band 7 
Texture Statistics: Mean, Contrast-Bands 3 

and 7; Correlation-Band 7 
Texture Statistics: Mean, Contrast, Correla- 

tion-Bands 3 and 7 

Digital Elevation Model (DEM) 
Local Relief Elevation (range within lOOm x 

loom window) 
Gradient 
Local Relief and DEM 
Local Relief. DEM and Gradient 

SPAC and TEXB 
SPAC and TERB 
SPAC, TERB and TEXB 

Terrain variables by themselves do not provide significant 
discrimination of any of the six landscape-scale classes. How- 
ever, of the four terrain variables tested, elevation (DEM) pro- 
vides the best discrimination, significantly greater discrimina- 
tion than other single terrain variables. In combination, eleva- 
tion, gradient and local relief (TERB) provide a slight improve- 
ment over DEM alone; however, it is not significant (z = 0.07). 

Finally, integrating spectral-spatial, texture, and terrain 
variables (INTC) provides the greatest discrimination of the six 
landscape-scale ecosystem classes, significantly greater than 
all other datasets (Table 7). When spectral-spatial variables are 
combined with either texture variables (INTA) or terrain vari- 
ables (INTB) alone, the results are not significantly different 
from using texture features alone (e.g., TEXB)(Z = 0.60 and 0.41, 
respectively). 

When examining the individual class accuracies, it is evi- 
dent that upland black spruceljack pine is consistently poorly 
classified. Of the variables tested, there is no variable that pro- 
vides suitable discrimination of upland black spruceljack 
pine. Similarly, the white sprucelbalsam fir landscape-scale 
class is poorly discriminated. The accuracies for the remaining 
four landscape-scale classes range from 77.2 percent to 93.2 
percent (Table 7). 

Discussion 
Aspen-dominated hardwood and mixedwood, cedar 
mixedwood, lowland black spruce, and wetland black spruce 
are the classes most easily discriminated whereas upland black 
spruceljack pine and white spruce/balsam fir are more diffi- 
cult. If the discrimination of the latter two landscape-scale 
classes could be improved, the overall results would improve 
significantly. It is not by chance that these two classes represent 
the most variable of conditions, both spectrally, spatially, and 
in reference to the terrain. Here, it should be noted that classifi- 
cation accuracy is a function not only of technique, but also of 
the class structure used with respect to the spatial and radio- 

TABLE 7. CLASSIFICATION ACCURACY (LINEAR DISCRIMINANT FUNCTION) BY CLASS 

Percent Classification Accuracy by Class** Mean 
Accuracy Kappa 

Variable Sett 1 2 3 4 5 6 (%I Coefficient (2) 
Spectral 

SPEA 78.4 33.2 41.2 14.0 63.2 71.6 50.3 0.403 
Spectral-Spatial 

SPAA 72.4 32.4 62.8 15.2 63.6 68.4 52.5 0.430 
SPAB 78.0 38.4 58.4 14.0 66.4 80.0 55.9 0.470 
SPAC 72.4 36.8 63.6 17.2 75.6 78.4 57.3 0.488 
SPAD 72.0 36.8 57.2 15.6 76.4 76.4 55.7 0.469 

Texture 
TEXA 70.8 25.6 54.0 29.6 73.6 89.2 57.1 0.486 
TEXB 70.8 31.6 56.0 36.4 86.8 89.2 61.8 0.542 
TEXC 78.4 19.2 66.0 25.2 80.4 80.4 58.3 0.499 
TEXD 81.2 18.4 67.6 30.4 88.0 80.0 60.9 0.531 
TEXE 80.8 18.0 64.8 31.6 86.8 93.2 62.5 0.550 
TEXF 78.0 18.4 64.8 40.0 84.4 94.4 63.3 0.560 

Terrain 
DEM 10.0 40.0 70.0 20.0 60.0 67.2 44.5 0.334 
REL 24.0 21.6 54.0 15.6 32.4 76.4 37.3 0.248 
GRAD 30.0 10.0 56.0 2.0 26.8 89.2 35.7 0.228 
TERA 20.0 40.0 70.0 0.0 60.0 70.0 43.3 0.320 
TERB 28.0 40.0 70.0 0.0 60.0 70.0 44.7 0.336 

Integrated 
INTA 70.4 44.8 76.4 21.6 85.2 78.8 62.9 0.554 
INTB 77.6 43.2 78.8 14.0 81.6 80.0 62.5 0.550 
INTC 77.2 46.4 85.2 23.6 93.2 80.0 67.6 0.611 

*Values in bold represent the highest classification accuracies for each class. 
tAcronyms are defined in Table 6. 
$1. Aspen-Dominated Hardwood and Mixedwood; 2. White Spruce / Balsam Fir Conifer and Mixedwood; 3. Cedar Mixedwood; 4. Upland Black 
Spruce / Jack Pine; 5. Lowland Black Spruce; and 6. Wetland Black Spruce 
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metric precision of the data (Hutchinson, 1982). These two 
classes in particular require close examination as to the condi- 
tions under which they may be uniquely characterized, either 
spectrally, spatially, or with reference to more specific terrain 
characteristics. It is likely that examination of these two classes 
from a class perspective is required, in that they may require 
further segregation or aggregation in order to consider them as 
mappable units or classes. The remaining four classes appear 
to be discriminable at appropriate levels, although these may 
also require reorganization to improve discriminability while 
maintaining ecological significance. 

In terms of the spectral-spatial variables used to map the 
six landscape-scale classes, the dataset consisting of three c~s r  
spectral bands at a spatial resolution of 6-m (SPAC) provided the 
best discrimination when compared to other spectral-spatial 
variables. The differences were not great, but were statistically 
significant. The dataset combining 6-m and 7-m data had a 
slightly lower LDA classification accuracy than did the 6-m 
dataset, suggesting that the optimal resolution was exceeded. 
On the other hand, the dataset that combined 4-, 5-, 6-, and 7-m 
data, did not produce the best results among the spectral-spa- 
tial variables. This may be linked to the fact that the estimates 
derived from the semivariogram analysis represent the mean 
sizes of support for a number of transects taken from each of the 
six landscape-scale classes. Possibly it would be more prudent 
to over-estimate the size of support based on the experimental 
variograms in order to optimally regularize the variability 
within the six landscape-scale classes. There may be some rela- 
tionship between the mean size of support and maximum size 
of support observed from a sample of experimental variograms 
to optimally determine the spatial resolution per class. This 
estimate then may best account for the spatial variability within 
the class. The estimate may not necessarily have the same rela- 
tionship to the mean for each class, but may vary based on the 
level of variability of each class. Regardless, it seems apparent 
that selecting an optimal spatial resolution for spectral data col- 
lection alone does not provide sufficient discriminatory power 
for classifying and mapping the six landscape-scale classes 
studied here. With the spatial resolutions examined, there is 
still significant within-class variability to contribute to poor 
between-class separability. 

Texture variables provide accuracies equal to, or greater 
than, any of the spectral-spatial variables. This supports the 
assertion that texture information is present within these L-res- 
olution reflectance data and is characterized to some degree by 
second-order texture transforms to assist in the discrimination 
of these landscape-scale classes. In addition, the mean texture 
feature provided the greatest discrimination among the classes 
because it not only characterizes texture, but it contains tonal 
(spectral) information as well. Mean texture features combined 
with the contrast texture feature for CASIBand 7 (744 nrn to 750 
nm) contributes additional textural information to provide 
additional discrimination for the forest ecosystem classes 
using three texture variables. It is suggested that these texture 
variables not only capture the tonal differences between gen- 
eral ecosystem classes, but that, within general ecosystem 
classes, they capture forest stand density differences. For 
example, texture variables improve the discrimination 
between lowland black spruce and lowlandtwetland black 
spruce. This may be attributed to the contrasting stem densities 
of 1700 stemstha and 900 stemstha for lowland black spruce 
and lowlandtwetland black spruce, respectively. Aspen-domi- 
nated stands, which possess the lowest stand densities (<700 
stemstha), are also well discriminated using textural features. 
This would suggest that texture variables may be extremely 
useful in characterizing forest stand structure (e.g., stem den- 
sity, canopy closure) at spatial resolutions where individual 
objects are not resolvable. 

It is evident that the terrain features tested here (i.e., eleva- 

tion, local relief, and gradient) do not provide great discrimina- 
tory power for the six landscape-scale classes examined. How- 
ever, it does appear that, within a small region, local elevation 
and gradient can be used to assist in the discrimination of for- 
est ecosystem classes when combined with other descriptors. It 
must be emphasized that, for a low- to moderate-relief boreal 
environment, these variables, particularly elevation, would 
have to be used within a relatively small local area, emphasiz- 
ing the local variation between ecosystem types. Gradient, on 
the other hand, may have potential for use at more regional 
scales. 

Based on the analyses presented, the integration of spectral 
data collected at appropriate resolutions with terrain informa- 
tion and texturally processed features offers promise for dis- 
criminating and classifying forest ecosystem classes. When the 
three types of variables were combined (INTC), a mean classifi- 
cation accuracy of 67.6 percent ( K  = 0.611) was achieved using 
LDA. Although this does not approach operational levels, it 
indicates that spectral, spatial, and terrain variables, in combi- 
nation, offer potential for discriminating forest ecosystems 
classes in low- to moderate-relief boreal environments. How- 
ever, it appears that, in this boreal environment, application of 
geomorphometric variables derived from 1:20,000-scale map 
data with a 5-m contour interval does not provide sufficient dis- 
crimination for the forest ecosystems examined. Based on field 
observations, elevation differences as small as a meter in this 
bedrock controlled environment could produce contrasting 
moisture regimes and, hence, vegetation patterns at close prox- 
imity to each other. Given that the root-mean-square error of 
DEMs derived from contours is approximately one-third to one- 
fifth of the contour interval, the difficulty in associating terrain 
variables with vegetation associations in a low- to moderate- 
relief boreal environment such as this is problematic. The 
reader is referred to numerous articles detailing the accuracy of 
digital elevationtterrain models (e.g., Chang and Tsai, 1991; 
Robinson, 1994; Giles and Franklin, 1996; Florinsky, 1998). 

Further refinements in spectral-spatial, textural, and ter- 
rain variables may provide the necessary discrimination 
required for operational classification and mapping of large 
areas of northern boreal forest. Specifically, improvement in 
discriminating certain ecosystem types such as upland black 
spruceljack pine and white sprucehalsam fir conifer and 
mixedwood would increase significantly the potential for clas- 
sification and mapping. It is suggested that more detailed terrain 
data modeling soil nutrient and moisture regimes are necessary 
for incorporation with reflectance and textural data for dis- 
criminating forest ecosystems. Additional potential lies with 
estimating structural variables from spectral-spatial and tex- 
tural features. 

Conclusions 
Given the relationship between forest and site, it was hypothe- 
sized that combining appropriately scaled remote sensing data 
with terrain descriptors/variables should improve the discrim- 
inability of landscape-scale forest ecosystem classes for the 
boreal forest of northwestern Ontario, Canada. Although not 
completely encouraging in terms of absolute classification 
accuracies, various conclusions can be made regarding (1) opti- 
mal scales of remote sensing data, (2) texture processing, and 
(3) the integration of terrain variables with reflectance data for 
discriminating forest ecosystem classes in a low- to moderate- 
relief boreal environment. These include 

Careful consideration must be given to the relationships 
between the forest classes of interest and the appropriate 
remote sensing spatial resolutions at which to sample those 
classes. To maximize discriminability of forest ecosystem 
classes, a spatial resolution that minimizes (regularizes) within- 
class variability, but maximizes between-class discrimination 
is required. Here it was demonstrated that 6-m reflectance data 
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provided the best discrimination of the landscape-scale forest Referenc- 
ecosystem classes studied. This spatial resolution or scale pro- 
vided greater discrimination than the following spectral-spatial Babey, s.,  and R. Soffer, 1992. Radiometric calibration of the compact 
datasets: 111 a 5-m dataset; (2) a combined dataset of 6- and Airborne Spectrographic Imager (CASI), Canadian Journal of 
7-m data;'&d (3) an "optimal" dataset (by class) of 4-, 5-, 6-, Remote Sensing, 18(4):233-242. 
and 7-m data. However, multiple spatial resolutio~S~~cales of Bard&, A., and F. P-iggiani, 1995. An investigation of the textural 
remote sensing reflectance data may be required, depending on characteristics associated with gray level co-occurrence matrix 
the nature of the classes to be discriminated and their structure, statistical parameters, IEEE nansactions on Geoscience and 
as well as their characteristic visible and near-infrared Remote Sensine, 33(2):293-304. 
reflectance. 
Texture features derived from L-resolution CASI reflectance data 
provide significant information for discrimination of land- 
scape-scale forest ecosystem classes. Here, texture variables pro- 
vide accuracies equal to, or greater than, any of the spectral- 
spatial variables. It is clear that texture information is present 
within these L-resolution reflectance data and is characterized 
to some degree by GLcM texture transforms to assist in the dis- 
crimination of these landscape-scale forest ecosystem classes. 
Terrain variables alone provide weak discrimination of forest 
ecosystem classes. However, when used in combination with 
spectral-spatial variables, they improve the discrimination of 
landscape-scale forest ecosystem classes. It must be empha- 
sized that for a low- to moderate-relief boreal environment, these 
variables, particularly elevation, would have to be used within 
a relatively small local area, emphasizing the local variation 
between ecosystem types. Slope, on the other hand, may have 
potential for use at more regional scales. It is postulated that 
more precise descriptors or models of terrain are required for 
integration with appropriate spectral-spatial reflectance fea- 
tures in a low- to moderate-relief boreal environment. These 
features must be derived from geomorphometric and soils data 
to model soil texture classes and moisture and nutrient regimes. 
The integration of spectral data coNected at appropriate resolu- 
tions with termin information and texturally processed features 
offrs promise for discriminating and classifying forest ecosys- 
tem classes. A mean classification accuracy of 67.6 percent 
(K = 0.611) was achieved when combining spectral-spatial, tex- 
tural, and terrain variables. This represents a significant im- 
provement over using spectral-spatial, texture, or terrain 
variables alone or in combinations of two variable types. This 
level of accuracy is not sufficient for operational classification 
and mapping, but it does indicate that appropriately scaled 
spectral, textural, and terrain variables provide a basis for classi- 
fication and mapping of large forest regions based on ecologi- 
cal criteria. 

It has been demonstrated that in a low-relief boreal envi- 
ronment, addition of textural and geomorphometric variables 
to high-resolution airborne remote sensing reflectance data pro- 
vides improved discrimination of forest ecosystem classes. 
Although these improvements are statistically significant, the 
absolute classification accuracies are not yet at levels suitable 
for operational classification and mapping. Further refine- 
ments, particularly of forest ecosystem class structure and ter- 
rain descriptors, are required for operational mapping of forest 
ecosystem classes. 
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