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Abstract 
A stereo matching algorithm dedicated to complex urban 
scenes is described. It relies on successive complementary 
matching steps, based on dynamic programming. First, in- 
tensity edges of both images are matched, which produces 
piecewise continuous 30 chains. This provides a description 
of the scene structure containing the highest elevation of most 
height discontinuities. Then the interval pairs defined by the 
matched edges are matched in a hiemrchical way by a mdio- 
metrically constrained process followed by a geometrically 
constrained one. 

The novelty of the approach lies in the use of several 
successive steps appropriate to difierent kinds of pixels. It 
provides dense disparity maps with less noise, while preserving 
discontinuities, which are a characteristic of urban digital 
elevation models. The method has proved reliable (producing 
few noisy and altimetrically accurate 30 data) and fast, and 
is robust to image variability. Perspectives within an industrial 
production context are discussed. 

Introduction 
The production of digital elevation models (DEM) from images 
has been one of the primary goals of cartography for many 
years. Recently, the area has been stimulated by the need for 
urban DEMs within many fields such as the production and 
management of three-dimensional ( 3 ~ )  databases, for urban and 
town planning, and for the simulation of line-of-sight micro- 
wave propagation. These applications usually require dense 
and reliable 3D data which preserve the characteristics of the 
scene. Particular attention has to be paid to height discontinu- 
ities, which are very frequent in urban environments. 

Because of the complexity and the rapid development of 
urban scenes, producing and updating an urban DEM requires 
much time from a human operator. Therefore, a lot of work has 
been done to automatically derive a DEM from aerial stereo 
imagery. Figure 1 shows an example of an aerial stereo pair. The 
stereoscopic matching process is very difficult in urban envi- 
ronments. The high density of above-ground objects leads to 
many hidden parts or occlusions in the images, and, therefore, 
to many pixels without a correspondence in the other image. 
The difficulty is compounded by the fact that many scene fea- 
tures are similar to each other (parallel borders of buildings or 
roads), homogeneous areas are frequent (shadows, roofs), and 
moving objects (car, trucks) may disrupt the scene. These char- 
acteristics of urban scenes make the matching process very 
ambiguous. In addition, large depth discontinuies are common; 
therefore, geometric constraints about the surface must be used 
very carefully. Many matching algorithms have been proposed 

in the literature, but none of them have achieved satisfactory 
results in complex urban areas. 

In this paper, a new matching algorithm especially dedi- 
cated to urban scenes is proposed. The input data are two 
stereo images sampled in epipolar geometry. The novelty of the 
approach lies in the use of several successive steps appropriate 
to different kinds of pixels. The algorithm provides dense 3D 
data, while preserving discontinuies. 

The paper is organized as follows: A brief review of stereo 
reconstruction methods in an urban environment is first pre- 
sented. The approach proposed in this paper is then intro- 
duced. It consists of two stages. First, intensity edges from both 
images are matched. Then dense elevation data are produced 
using an area-based matching process. The results are pre- 
sented and discussed and the application of the technique to 
the industrial production of a DEM is presented. 

Related Work 
Much work has been done on automatic stereoscopic matching, 
and two distinct matching methods have emerged: feature- 
based and area-based approaches. 

Feature-based matching consists of matching primitive 
sets extracted from each image. Common features in an urban 
environment are points of interest, segments, and linear struc- 
tures [Horaud and Skordas, 1989; Hoff and Ahuja, 1989; Roux 
and McKeown, 1994; Noronha and Nevatia, 1997; Schmid and 
Zisserman, 1997). The feature-based approach is appropriate 
for discontinuity management, because height discontinuities 
often appear as intensity discontinuities in the images. How- 
ever, an interpolation or an approximation of the surface is 
required to derive a dense DEM from the 3D features. In an urban 
environment, a common hypothesis consists of looking for pla- 
nar surfaces. Thus, 3D linear features and planar approxima- 
tions can be used for the 3D reconstruction of some buildings. 
However, the complexity of the surface in urban areas, which 
includes vegetation, arbitrarily complex buildings, and house 
aggregates, usually does not allow such an interpolation. The 
use of multiple views and very high resolution imagery (15 cm 
per pixel or less) appears to be necessary (Haala and Hahn, 
1995; Bignone et al., 1996; Moons et al., 1998; Henricsson, 
1998; Baillard et al., 1999). 

The second class of methods is area-based and aims at 
matching every pixel by measuring the similarity of grey-level 
templates. The advantage is to produce dense disparity maps 
and therefore dense DEMs. However, it is difficult to cope with 
both homogeneous areas and discontinuities. Homogeneous 
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Figure 1. Example of an aerial stereo pair, sampled in epipolar geometry. The images are 710 by 600 
pixels, one pixel corresponding to a ground distance of 40 cm. A one-pixel difference in disparity 
(measured between the two images) corresponds to a 96-cm difference in height. The disparity range 
is about of 50 pixels. 

areas are composed of ambiguous pixels for the matching pro- 
cess, and they introduce many errors in the DEM. Applying a 
continuity constraint between two neighboring 3D points is 
very efficient at reducing errors, and has been successfully used 
for the reconstruction of continuous surfaces or for low resolu- 
tion imagery (typically satellite imagery) (Otto and Chau, 
1989). Multi-resolution approaches are also frequently used to 
reduce errors in homogeneous areas: i.e., images are sub-sam- 
pled at various resolutions, and the matching process at a given 
resolution level is driven by disparity values produced at a 
coarser level (Hannah, 1989; Dhond and Aggarwal, 1995). This 
kind of approach also implicitely relies on a continuity as- 
sumption. These strategies must therefore be used very care- 
fully when dealing with discontinuous surfaces (O'Neill and 
Denos, 1992). Another solution consists of involving more than 
two images in the matching process, because ambiguities and 
hidden part effects are then reduced (Berthod et al., 1995; Lel- 
oglu et a]., 1998). 

A common approach consists in combining an area-based 
matching process with a monocular analysis. It has been pro- 
posed to involve correlation windows with a variable size 
derived from the intensity edges (Lotti and Giraudon, 1994). 
More recently, an adaptive window shape based on intensity 
edges has also been proposed (Cord et al., 1998). The surface 
can be a posteriori refined by adaptive correlation windows 
depending on the intensity function (Kanade and Okutomi, 
1994), or by an adaptive smoothing (Cochran and Medioni, 
1992). In Fua (1991), surfaces are interpolated by a diffusion 
algorithm driven by the radiometric gradient. Radiometric seg- 
mentations can be utilized to perform a planar approximation 
of 3D points with homogeneous radiometry (Maitre and Luo, 
1992; Girard et al., 1998; Fradkin et al., 1999). Unfortunately, 
these methods suffer from segmentation limits. Many height 
discontinuities do not appear in the intensity image, and, 
reciprocally, many textural radiometric edges create over-seg- 
mentation problems. In order to overcome these limits, spe- 
cific models of buildings must be used for approximating the 
DEM (Dang eta]., 1994; Weidner and Foerstner, 1995; Haala and 
Hahn, 1995; Paparoditis et al., 1998). However, these models 
are not appropriate for dense urban scenes, where objects are 
complex and adjacent to each other. 
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An alternative solution to cope with discontinuities con- 
sists of explicitely involving occlusions in the matching pro- 
cess (Belhumeur and Mumford, 1992; Geiger et al., 1995; Luo 
and Burkhardt, 1995; Birchfield and Tomasi, 1998). Occlu- 
sions are very important because a height discontinuity in the 
scene will generally produce a depth discontinuity in one view 
and an occlusion area in the other view. 

Overview of the Matching Algorithm 
The method presented in this paper takes advantage of both fea- 
ture-based and area-based approaches, and takes occlusions 
into account through a dynamic programming optimization 
process. The novelty of the approach lies in the use of several 
successive steps, each of them appropriate for a certain kind of 
pixels. The input data are two stereo images sampled in an epi- 
polar geometry (see Figure 1). The overview of the algorithm is 
presented in Figure 2. 

The first sGge consists in matching intensity edges from 
both images. which ~roduces ~iecewise continuous 3D chains 
(see the Lection on 6dge ~ o i n i  Matching). This provides a 
description of the scene structure containing the highest eleva- 
tion of most height discontinuities. 

The second stage is based on area-based matching (see the 
section on Area-Based Matching between Edge Points). It aims 
at matching the pairs of intervals defined by the matched edges 
from the first stage. Involving matched edges as anchor points 
reduces the search space for corresponding pixels, therefore 
decreasing the number of false matches and the computation 
time. A matched edge pair can be rejected if it is not consistent 
with the new matching set. This area-based matching stage itself 
works in two steps. First, a strong radiometric similarity con- 
straint is applied, in order to produce only reliable pairs. Then 
a second matching step is performed with a looser radiometric 
constraint but a stronger geometric one (smoothness con- 
straint), in order to complete the matching on unmatched areas. 
This hierarchical strategy relies on the assumption that local 
extrema of depth along epipolar lines are recovered as reliable 
pairs during the radiometrically constrained step. Some infor- 
mation about image radiometry and shadows is also computed 
and exploited during the matching. These two steps are de- 
scribed in later. 
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Figure 2. Overview of the matching process: A 
hierarchical strategy, consisting of a feature 
based matching stage followed by a two-step 
area-based matching stage. 

Each matching step is performed by dynamic program- 
ming. This is an efficient technique to solve constrained non- 
linear optimization problems, which is often used in stereovi- 
sion to match edges or intervals. In this context, the matching 
problem is expressed as an optimization problem for each epi- 
polar line pair. It consists of finding an optimal path in a zn 
graph defined by conjugate epipolar lines, called the corre- 
spondence graph (see Figure 3). Dynamic programming is a 
powerful matching strategy, because it provides an optimal 
solution for each epipolar line pair, involving all consistency 
constraints along these lines: unicity, order, but also duality 
between discontinuity and occlusion. In particular, the hidden 
parts are not matched. Therefore, local constraints such as dis- 
parity range or thresholds on similarity measure can be re- 
leased without significantly increasing errors. This aspect is 
very important for urban scenes where differences in height 
can be very large in the neighborhood of towers, and the corre- 
lation values can be very low in homogeneous areas. 

The optimal path has to minimize a cost function C(i,j) 
which is defined recursively within the disparity range by the 
relations 

where match and occ are elementary cost functions associated 
with elementary paths according to the scheme of Figure 4. 
The elementary path (1) denotes a match between two edge 
points, and it is associated with the matching cost match(i,j). 
The elementary paths (2) and (3) correspond to an occluded 
point in the right image or the left image, and they are both as- 
sociated with the cost function occ. Such a configuration is 
symmetrical to both images. Ifthe disparity value reIated to the 
pair (Li, Rj) is not a member of the disparity range, then C(i,j) = 
+m. 
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Left epipolar line 

Occlus~on in 

Right epipolar line 

Figure 3. Correspondence graph and matching path. The 
axes of the graph represent conjugate epipolar lines. The 
subparts of the path which are parallel to the axes correspond 
to hidden areas in the right or the left image; the other 
subparts of the graph describe the visible 3~ surface of 
the scene. 

epipolar line 7- in left image 

epipolar line 
in right image 

Figure 4. Elementary pathes for dynamic programming. 
The elementary path (1) denotes a match between the 
two points L, and Rj the elementary paths (2) and (3) 
describe the occlusion of Li in the right image and the 
occlusion of R, in the left image, respectively. 

The difficulty of dynamic programming stems from choos- 
ing elementary cost functions and the need to preserve inter- 
line consistency. In the next two sections, our method for edge 
matching and area-based matching are detailed, paying special 
attention to the choice of cost functions and interline 
consistency. 

Edge Point Matching 
Dynamic programming has often been used for edge matching, 
with various methods to achieve interline consistency. Ohta 
and Kanade (1985) have proposed a simultaneous optimization 
for all epipolar line pairs, by involving a three-dimensional 



search graph. The continuity constraint across lines can also be 
imposed by post-processing, which requires much less com- 
putation (Baker and Binford, 1981; Lloyd et al., 1987). Another 
solution consists in involving the inter-line consistency in the 
matching cost function. Wu and Maitre (1989) have proposed a 
consistency cost depending on the disparity differences be- 
tween two neighboring lines; however, this is subject to error 
propagation. 

We have defined a new approach to match edge points 
(edgels) which takes the interline consistency into account in 
the matching cost function. Error propagation is avoided by 
working in several steps. The originality of the method is to use 
the distribution of "potential" matches to compute the match- 
ing costs. 

First, a local elementary similarity cost is computed for 
each edgel pair. This cost defines potential edgel pairs and 
potential disparity values. An analysis of the distribution of 
potential disparity values along edge chains leads to the com- 
putation of the final matching cost function. The matching is 
then achieved by dynamic programming for each epipolar line 
pair. Finally, an a posteriori correction is performed to guaran- 
tee the consistency of the 3D chains. The algorithm is detailed 
in the next subsections. 

Edge Points and Attributes 
Edges are extracted from each image with the Canny-Deriche 
filter (Deriche, 1987) followed by hysteresis thresholding. 
Three quantitative attributes are associated with each edge 
point (or edgel): 

0, the local orientation of the intensity gradient, computed mod- 
ulo 2 ~ ,  given as output of the Canny-Deriche filter; and 
4 and I,, the intensity values on each side of the edge point (left 
side and right side), along the epipolar line, computed by the 
"Toboggan" enhancement technique proposed in Fairfield 
(1990). 

Potential Edge Palrs 
The elementary matching cost between two edge points Li (left 
image) and Rj (right image) is defined by 

matcho(i,j) = a 
min[AIl(i, j),AI,-(i, j)] A6 

AIo + P z  

where 

AZ/(i, j) = II,(Li) - I/(Rj)I; 
AIr(i,j) = lI,-(Li) - Ir(Rj); 
A6 = ] 6 (Lj) - 6 (Rj),  computed modulo 2 ?r; 

AIo = 255, AOo = ra re  normalization constants; and 
a and pare weight values satisfying a + P = 1; They are 

automatically computed for each epipolar line pair, as respec- 
tively proportionnal to the intra-line variance of the intensity 
and the intra-line variance of the gradient orientation. 

A pair of edgels (Li,Rj) is a potential edgel pair if 

where C,, is the upper bound value for the elementary cost, 
above which pairs are rejected. Its numerical value expresses a 
compromise between match density and quality. The disparity 
value related to a potential edgel pair is called a potential dis- 
parity value. 

Final Matching Cost 
A polygonal approximation of the edge chains is performed in 
each image in order to partition the chains into linear seg- 
ments. The set P of potential edgel pairs is then partitioned in 

two independent ways: a partition PL is defined relative to the 
segments from the left image, and a partition PR is defined rela- 
tive to the segments from the right image. 

More precisely, two potential edgel pairs (L,, R,) and (Lz, 
R,) belong to the same element of PL if L, and Lz belong to the 
same segment SL of the left image. These pairs are said to be 
consistent with each other if the corresponding disparity 
values dl = disp(L,, R1) and d, = disp(L, R,) satisfy the fol- 
lowing property: 

vd E N, dl 5 d 5 dz, 3(L, R) E PLIL E SL, and d = disp(L, R). 

The consistency relation between edgel pairs of PL is illu- 
strated in Figure 5. It defines an equivalence relation over P 
respecting the partition PL. A similar consistency relation is 
defined respecting the partition PR issued from the right image. 

Let (Li, R.) be a potential edgel pair, with Li belonging to a 
segment sL oithe left image and Rjbelonging to a segment SR of 
the right image. If C(SL) 2 Z(SR) (Z being the segment length), the 
final matching cost match(i,j) between Lf and Rf is defined by 

where cmat~h(~,,~(k) is given by 

if Si,jk = 0 
c m a t ~ h ( ~ , ~  (k) = { ~ ~ ~ r n a t c h , ( k , l ) ~  E Si,jc] otherwise 

Left image Right image --------.-.---.------. -----.-.-------..----. 

--------... 

-----------.---------- .--.......---....----- 
Nb 

potential 
disparity values 

(S.,, (SR,.Sn,) (SIC,) (SIC#) 

Figure 5. Definition of consistent pairs. 
Top: Potential pairs related to the segment 
S, (potential correspondences are repre- 
sented by the symbol +). Bottom: Distribu- 
tion of the potential disparity values related 
to S,. The four connected components of 
the histogram define four sets of consistent 
pairs. For example the edgel pairs 
(L,, R,) and (L2, R2) are consistent. Consis- 
tent edgel pairs can correspond to several 
segments in one of the images, as long as 
their disparity values belong to the same 
component of the histogram (for instance, 
the two line segments S,, and SRS define 
the same component). 
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and process. The use of adaptive correlation windows depending on 
intensity edges or matched edges makes the process very de- 

Si,j,k = (RII(Lk, R]) consistent with (Li, Rj). pendent on the quality of the edge detection or the edge 
matching. 

The matching cost match(i,j) is averaged over the segment As before, the occlusion cost is fixed and related to a mini- 
SL; a contributing cost can be either an elementary cost or the mal threshold S- on the correlation values: i.e., 
maximal cost C,,, according to the content of the set Si,j,k. If 
e(SL) r t(SR), the matching cost is defined in a symmetric way 1 - Smh 
according to the segment SR. If (Li, Rj) is not a potential edge occ = - 
pair, then 

2 .  

Every occlusion is related to a disparity jump. Therefore, 
match(i,j) = C,,. when occ decreases, Smi, becomes larger and the similarity 

constraint is stronger, but height discontinuities are more fre- 
According to this definition, match(i,j) Cm, v(i,j). The quent. The numerical value of occ expresses a trade off be- 

value match(i,j) decreases with the number of "neighboring" tween the similarity constraint on matched pixels and a 
potential matches consistent with (Li, Rj). Therefore, the inter- smoothness constraint on the surface, 
line consistency is implicitely taken into account through the In order to take advantage of this duality, we propose a two- 
intra-chain consistency. step procedure. A first radiometrically constrained matching 

Optimization 
step with a low occlusion cost provides high quality matched 
pairs without a strong constraint on the surface smoothness, 

Once the matching has been for each which is very important in urban scenes. A second matching 
pair, a graph is created for each e ~ i ~ o l a r  step is then performed to complete the elevation data, which 

line pair, consiting of the edgels fromthe left andrightimages. is, on the contrary, geometrically constrained by a high occlu- In case of adjacent edge points on the e ~ i ~ o l a r  line, the sion cost and based on the reliable matches issued from the 
first and the last are kept. Two additional points L, and R,, fiBt step. 
define the starting position of the path. The ending location of This hierarchical strategy relies on the assumption that 
the path is free within the disparity range. local extrema of depth along epipolar lines are recovered as 

The matching cost of Li and R, is match(i,j). The occlusion reliable pairs during the first step, This is practically true 
cost occ is related to an unmatched edge (occlusion or non- because local depth exbema are often rather in the 
detected corresponding edge point). It is COnstant and associ- images. Under this assumption, the smoothness of 
ated with the maximal matching cost by the relation the second step is applied to complete the matching on un- 

matched areas. In this way, the reliable matches, i.e., those char- 
Crna occ = - . acterized by high similarity, are used to aid in the more ambig- 

2 uous decisions. The next two subsections describe each of 
those steps. 

This relation expresses the fact that matching L, to Rj is "better" 
than both occlusions of Li and Rj if and only if match(i, j) <20cc Radlometdcally Constmlned Matching 
(see Figure 4). In this first step, the occlusion cost is quite low (practically, 

After the optimal path in the corres~ondence graph has occ = 0.25). The input intervals are defined by the matched 
beencom~utedb~ dynamic programming, a~ost~rocessing is edges from the previous stage. Using the matched edges as 
performed to remove local errors and complete the matching on anchor points decreases the number of potential matches, and 
chains where pixels have not been matched. It is based on the thus reduces both erroneous matching and computation time. 
continuity and linearity criteria proposed in Mohan et al. Additionally, the edge1 pairs must be verified by the results of 
(1989): i.e., disparity values are C O ~ ~ ~ ~ U O U S  and linear dong the area-based matching: the disparity value of an edgel pair 
linear edge segments. Therefore, the disparity values are must be close to the disparity values of the neighboring pixels 
approximated according to a linear model defined for each seg- (at least on one side). 1f an edgel pair is not verified, then it is 
ment of the left image, using least-squares estimation. removed from the matching set. A new interval pair is com- 

puted by merging the two intervals separated by the invalid 
Area-Based Matching between Edge Points edge1 pair, and it is matched again. 

Prlnclple Figure 6 shows an example of a matching path followed by 
In order to produce dense elevation data, area-based matching the 'gorithm. 
is performed between the matched edge points. If (&, Rg) and Despite of the low occlusion cost, the disparity map pro- 

(Lg, RL) are two consecutive pairs of edge points on m epipolar duced by this matching step contains a few errors in homoge- 

line pair, then this stage aims at matching the intervals ]&..Lg[ neous areas* We Propose three postprocessing to detect 

and ]Rg..R&[. At this stage, the matching is not limited to edge and them: 

points, i.e., it concerns any pixel. Shadows are very common homogeneous areas in urban imag- 
Dynamic programming is used again. A correspondence ery, and they often induce errors in the disparity map. There- 

graph is defined for each interval pair. The end points of the fore, shadows are automatically detected in each image. First, 

path are given by (a, Rg) and (Li, R&). The matching cost the histogram of intensity values is analyzed in order to deter- 

between two pixels L, and Rj is given by mine the first local minimum. The corresponding intensity 
value is used as a threshold for the intensity image. The binary 

match(i,j) = 1 - SN (i,j) thresholded image is finally filtered by morphological operators. 
The pairs of pixels corresponding to shadow pixels in each 
image are removed from the matching set. 

where SN (i,j) is the centered normalized cross-correlation coef- The normalized centered cross-correlation coefficient is invari- 
ficient computed over a window of size N. Thus, ant to affine transformation on intensity, which is important 

for the robustness to change in radiometry. But this property 
match(i,j) E [0..2lV(i,j). sometimes induces errors. In order to detect these errors, we 

assume that the average radiometric difference between corres- 
The size of the window is constant for the robustness of the ponding pixels is locally planar. The image is divided into 
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Figure 6. Example of a matching path automatically fol- 
lowed by dynamic programming. The matching path (in 
white) is superimposed with the crosscorrelation scores 
computed with a window size of 7 by 7 (bright areas 
correspond to high correlation scores). The path is con- 
strained by the matched edges (the grey areas are not 
allowed) and by the disparity range (the black areas are 
not allowed). 

rectangular patches, and the plane of radiometric differences is 
estimated for each patch by least-squares optimization. Outly- 
ers are removed from the matching set. 
The last postprocessing step is justified by the implicit morphol- 
ogy of the surface: the very small regions (an area of a few 
pixel) isolated in 3D are assumed to be matching errors. They 
are detected and removed by morphological filtering. 

Geometricallv Constrained Matchine 
The radiometrically constr2ned area-based matching step pro- 
vides reliable pairs but some disparity values are missing, 
mainly in homogeneous areas. The last matching step aims at 
com~letinn elevation data for anv area which is not occluded. It 
is achievedu by using a weak radiometric constraint but a strong 
geometric constraint. 

The input intervals are the unmatched intervals from the 
radiometrically constrained matching step. The occlusion cost 
is now high (practically, occ = 0.5), which defines a very small 
minimal correlation threshold. It tends to produce a disparity 
function which varies in a monotone way between two pairs 
along epipolar lines, in order to minimize the number of occlu- 
sions. A geometric smoothness of missing data is actually 
implicitely assumed. 

The information extracted at the previous stage about 
shadows and radiometric differences is also exploited at this 
stage. When matching an interval pair whose end point eleva- 
tions are h, and h,, h, 5 h,, then any pair of shadow pixels 
located within the interval pair and corresponding to the eleva- 
tion h, (the smallest) is supported by avery low matching cost. 
This expresses that shadow areas are preferably located at a low 
elevation. Similarly, the putative pixel pairs with a difference 
in radiometry distant from the plane of differences computed at 
the previous step are affected by a high matching cost. 

As a last step, a morphological filtering along columns is 
applied in order to remove narrow noise regions parallel to epi- 
polar lines. This kind of noise is characteristic of matching 
methods based on dynamic programming, when each epipolar 
line pair is processed independently from the other. 

Experimentation and Discussion 
The algorithm has been tested on different kinds of images, 
with various pixel sizes (between 16 and 103 cm on the 
ground) and various scene contents (Baillard, 1997). The same 
parameter values have been used for all experiments. An ex- 
ample of an aerial stereo pair is shown in Figure 1, and the main 
results of the matching process are illustrated in Figure 7. 
Another example of a disparity map automatically computed is 
shown on Figure 8. 

I 

(c) (4 

Figure 7. Disparity maps produced for the pair of Figure 1, 
with and without the hierarchical approach: the darkest grey 
levels correspond to the highest elevations, and the white 
areas to unmatched pixels. (a) Disparity map after edge 
point matching (subpart). (b) Disparity map produced with 
a one-step dynamic programming process (occ = 0.5). (c) 
Disparity map after the radiometrically constrained area- 
based matching step (occ = 0.25) (d) Disparity map after 
the geometrically constrained area-based matching step 
(occ = 0.5). In comparison to (b), the disparities are much 
less noisy in the neighborhood of large differences in height. 
The hierarchical strategy is of prime importance for the 
quality of the results. 
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(a) 

(b) 
Figure 8. (a) Left intensity image (1105 by 1024 size, pixel 
40 cm, disparity range 70 pixels); (b) Final disparity map. 

The edge matching step provides reliable 3D information 
about most edges of the image. Depending on the input images, 
between 60 and 80 percent of the edge points are matched. Lost 
edges often correspond to vegetation areas, which do not verify 
the linearity hypothesis. 

After the first radiometrically constrained area-based 
matching step, more than half of the pixels have been matched. 
Unmatched pixels mostly correspond to hidden area (occlu- 
sions), vegetation, and homogeneous areas (low correlation 
scores). The disparity values are reliable, and local extrema 
have been located in 3D. 

The final disparity maps are dense with very little noise, 
even when a large disparity range is used. The height disconti- 
nuities have been preserved, although slightly delocalized. 
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This is due to the use of a fixed-size correlation window, which 
produces a biaised similarity measure in the neighborhood of 
discontinuities. However, the global shape of the objects has 
been preserved. Experiments have shown than a correlation 
window limited by intensity edges is too sensitive to the qual- 
ity of edge detection. It leads to irregularly shaped objects when 
intensity edges are missing or broken (very frequent in com- 
plex urban images at a resolution of over 40 cm per pixel), and 
to noisy elevations over textured areas like vegetation. The dis- 
parity accuracy is about 1 pixel, and the planimetric accuracy 
is smaller than 3 to 4 pixels (half the size of the correlation 
window). 

The quality of the result is partly due to the d ~ a r n i c  Dro- 
gramming opthization process, which relies highly on con- 
sistency constraints. More es~eciallv. the dualitv between -- 

disconhnuities and occlusio~s is a Liy point for>uccessful 
matching in urban environments. 

The hierarchical strategy is also essential. Figure 7b shows a 
disparity map produced by a one-step dynamic programming 
process. When compared to Figure 7d, it shows that, given a sirni- 
lar matching density, errors are signficantly reduced by involv- 
ing a hierachical process. This is especially true in the 
neighborhood of large occlusions. In addition, the total pro- 
cessing time has decreased by half. The efficiency of the hierar- 
chical strategy stems from a relevant reduction of the search 
space: edges, well-contrasted pixels, and homogeneous areas are 
each processed in an appropriate way. The radiometric informa- 
tion provided by reliable points (shadows and radiometric differ- 
ences) makes the final elevation data even more robust. 

The characteristics of these results allow interesting per- 
spectives for DEM production in urban scenes. 

Application to DEM Production 
The algorithm has been used experimentally for the automatic 
production of urban DEMs on a large scale. For that purpose, it 
has been computationnally adapted to the processing of large 
sets of data (big input images). The control of the search inter- 
val for corresponding points is an important aspect, both to 
limit false matches and to keep the processing time small. The 
parametrization of the disparity range is therefore performed 
using a 25-m-grid DTM available for all of France (accuracy 
5m.). This external altimetric database provides elevations of 
the ground surface and, therefore, a local lower bound value 
for height. This information dynamically constrains the search 
interval to be explored during the matching process. The high- 
est elevations can be automatically computed by matching sub- 
sampled images, or provided by a coarse hand-made map of 
highest elevations (which can be expressed relatively to the 
lowest ones). This latter solution has been chosen for our 
experiments, because it is quick and reliable. In addition, all 
bodies of water have been excluded from the correlation area 
because of specular reflections occuring at these places. 

An example of a 5000- by 10000-pixel stereo pair is shown 
in Figure 9 (subregion of Paris, resolution 40 cm per pixel, sam- 
pled in an epipolar geometry]. The DEM computed with the 
method is shown in Figure 10. The interactive preprocessing 
step lasted 30 minutes, consisting of making the map of highest 
elevations and delineating borders of the Seine River. The 
automatic matching of the whole area was achieved in 5 hours 
on an ordinary workstation. This shows that the method can be 
used in practical situations for the production of urban DEMs on 
a large scale. 

These kinds of DEMS can also be used in the production of 
3D perspective views of a scene. Figure 11 shows a 3D view of 
Paris, automatically computed from the DEM of Figure 10, and 
texture mapped using the two input images. For that purpose, 
the DEM has been segmented into ground and above ground 
areas with the method described in (Baillard and Maitre, 

September 2000 1125 



Figure 9. Example of a large aerial image of Paris, and a 
subregion of it. The large image is about 5,000 by 10,000 Figure 10. DEM automatically produced by stereo matching 
pixels, at a resolution of 40 cm on the ground. for the example of Figure 9 (projected onto a cartographic 

reference). The unmatched areas of the DEM (in black) are 
due to hidden areas (occlusions). Water areas have been 
removed because of specular reflection. 

1999). A DTM (digital terrain model) of the scene was simultane- 
ously derived from the detected ground regions. The DTM was 
used to complete 3D data for the occluded areas that were not 
visible on both images. The textural data came from an "ortho- 
image" of the scene (a radiometric image where all the projec- 
tive distortion has been corrected). The ortho-image was 
derived from the DEM and both radiometric images, and cor- 
rected by the planar model of the grey-level differences 
described in the section on Radiometrically Constrained 
Matching. The occluded areas that were visible on one image 
only were mapped by the visible intensity. As for areas 
occluded in both images (lateral occlusions), the intensity 
could be interpolated without visual failures in the case of 
small surfaces. 

The perspective view which was produced shows a few 
defaults but it is visually quite good, and it can be used for 
applications such as urban planning, impact study, or 
advertisement. 

Conclusion 
We have presented a matching algorithm dedicated to urban 
stereo pairs. It consists of successive steps based on dynamic 
programming. The originality of the method is two-fold: the 
explicit use of duality between discontinuities and occlusions, 
and the definition of a relevant hierarchical strategy. 

-6 September 2000 

Experimentation has shown that this matching algorithm 
has many advantages. It provides dense elevation values (only 
occluded points are not matched), and preserves height discon- 
tinuities. The 3D data are reliable, even in the neighborhood of 
large differences in height or in homogeneous areas. In addi- 
tion, the algorithm is fast, it is robust to the variability of 
images (scene content and pixel resolution), and it does not 
require a fine tuning of parameters. Its main drawback is the 
relative planimetric inaccuracy in the neighborhood of height 
discontinuities, which has been conceded to achieve 
robustness. For many practical applications, robustness and 
density are more important than high accuracy. However, for 
applications where a very good planimetric accuracy is 
required, the same method could be applied with an adaptive 
correlation window (Cord et al., 1998). 

These characteristics make the matching algorithm partic- 
ularly interesting for the production of urban DEMs. It has been 
successfully implemented within an industrial context to pro- 
duce urban DEMs on a large scale. It also provides a good basis 
for the production of ortho-images or 3D perspective views. 
Within a fine building reconstruction process, the provided DEM 
can be used to detect regions of interest (buildings for example) 
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Figure 11. Two 3 D  perspective views of the 30 model pro- 
duced from the DEM shown in Figure 10 and texture mapped 
from the original images. 

where a geometric refinement is expected (Baillard and Maitre, 
1999). The local and contextual information related to regions 
of interest can help for an accurate reconstruction in many 
ways: e.g., selection of relevant features, choice of an appro- 
priate reconstruction model, and automatic parametrization. 
Therefore, the matching algorithm presented in this paper can 
be very useful both for the production of DEMs on a large scale 
and as a starting point for a coarse-to-fine process dedicated to 
an accurate and complete 3D reconstruction. 
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