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Abstract 
We show that two ofien-cited statistical band selection methods 
for image visualization provide significantly different results 
when applied to the same data set. The cause of the difference 
is first identified. Then, an alternative method based on the 
minimization of redundant information between bands is 
presented. The new measure is robust against the existence 
of multicollinearity A procedure to help determine an 
appropriate band subset size is also proposed. 

There are only a few remote sensing publications on statistical 
band selection with the objective to maximize the overall 
information content for visual interpretation. Textbooks on 
remote sensing, such as Lillesand and Kiefer (1994) and Har- 
rison and Jupp (1990), refer to a method developed by Chavez 
et al. (1982). A section devoted to that topic in a recent review 
by Pohl and Van Genderen (1998) reports on only a few others. 
Weaknesses associated with most of them can be found in 
Sheffield (1985) and Mausel et al. (1990). Sheffield (1985) pro- 
posed a method to discourage the selection of pairs of bands 
with high correlation based on principal component analysis. 
All these methods are inclusively based on statistics derived 
from the scene. 

The image band selection problem can be stated as follow: 
identify the image band subset(s) of size p that contain the most 
information among Navailable bands. Statistical band selec- 
tion relies on the fact that not all image bands carry the same 
amount of information and that adjacent bands in the spectral 
domain are highly correlated ('h et al., 1998). The hypothesis is 
that it is possible to select a subset of bands that retain most of 
the information of the entire data set with a negligible loss of 
information, or to select band combinations that contain the 
highest possible amount of information given a predefined 
subset size. 

We first focus our attention on the methods of Chavez et al. 
(1982) and Sheffield (1985). It is shown that, although the goals 
are the same, they produce significantly different results when 
applied to the same data set. The origin of this departure can be 
understood by establishing a link in their formalisms and by 
reviewing the procedure used in both studies to validate their 
results. We then present an alternative index that is, in fact, 
a normalized version of the Sheffield index. A procedure to 
help in determining an appropriate band subset size is finally 
proposed. In the following discussion, the elements of the 
covariance matrix, M, are denoted as mi> The elements of 
the correlation matrix, R, are denoted as pij, where pii 
= m. [miim..]-"2. II I1 

Canada Centre for Remote Sensing, 588 Booth Street, 
Ottawa KIA OY7, Canada (mabeauch@ccrs.nrcan.gc.ca; 
ko.fung@ccrs.nrcan.gc.ca). 

Methods Overview 
The methods developed by Chavez et al. (1982) and Sheffield 
(1985) rely on an index devised to rank band subsets according 
to their information content. 

Chavez et al. 
The Optimum Index Factor (OF) was introduced by Chavez et 
al. to select a three-band combination that displays the greatest 
details among a maximum of 20 bands. The index is given by 

where SDi is the standard deviation of band i and ABS(Cq) is 
the absolute value of the correlation coefficient between any 
two of the possible three pairs. According to Chavez et al., the 
highest values of OIF should be the three bands having the most 
information content. This measure favors the selection of those 
bands having high variances and low pair-wise correlation. 
The measure can obviously be extended to any subset of arbi- 
trary size p; then, IOF is defined as 

M e l d  
Sheffield (1985) proposed a method based on the size of the 
hyperspace spanned by the data bands. The square root of the 
product of the eigenvalues of the three principal components 
defines the significant volume spanned by the image bands in 
the hyperspace (ellipsoid volume for p = 3). Sheffield suggests 
that those bands with the biggest hypervolumes be selected. 
According to Sheffield, the above approach would discourage 
the selection of those pairs having high correlation coeffi- 
cients, the rationale being that highly correlated image band 
pairs will have the eigenvalue of one of the two image bands 
close to zero. Therefore, if a highly correlated pair is chosen, the 
resultant (hyper)volume, which is the product of the eigenval- 
ues, will be small. Because the product of the eigenvalues (prin- 
cipal axis system) is equal to the determinant of the original 
covariance matrix, it is sufficient to rank in decreasing order the 
value of the determinant of each p by p sub-matrix generated 
from the original covariance matrix. The Sheffield index (SI) is 
given by 

Photogrammetric Engineering & Remote Sensing 
Vol. 67, No. 5, May 2001, pp. 571-574. 

0099-111210116705-571$3.00/0 
O 2001 American Society for Photogrammetry 

and Remote Sensing 

NOTE SENSING 



TABU 1. CHAVR ETAL. DATASET. COMPARISON OFTHE RANK VALUES ASSIGNED 
BY DIFFERENT METHODS: OIF, SI. AND CI. 

Band (ratio) 
Rank 

Combination Number* IOF S I  C I  

*The correspondence between these numbers and TM band ratios are 
the following: 1 = 415, 2 = 416, 3 = 417, 4 = 516, 5 = 517, and 6 = 617. 

TABLE 2. SHEFFIELD (1985) DATA SET. COMPARISON OFTHE RANK VALUES 
ASSIGNED BY DIFFERENT METHODS: OIF, SI, AND CI. ONLY THE FIRST 16 HIGHEST 

RANKS OBTAINED FROM SI ARE SHOWN. 

Band 
Rank 

Combinations SI IOF CI 

1,4,5 1 11 14 
1,5,6 2 8 22 
1,33 3 12 23 
1,4,6 4 24 13 
3,4,5 5 22 24 
13.7 6 1 1 
3 3 3  7 18 28 
2,43 8 2 7 17 
4,5,6 9 19 29 
1,3,6 10 25 2 1 
2,5,6 11 20 25 
1.23 12 16 27 
3 4 3  13 29 20 
3,5,7 14 5 6 
2,4,6 15 32 16 
1,6,7 16 2 2 

where (MpXp( is the determinant of the covariance matrix of sub- 
set size p. Assuming that the data are described by an N-dimen- 
sional normal distribution, Sheffield (1985) demonstrates that 
maximizing the determinant is equivalent to selecting the 
band subset of maximum entropy. 

Comparison of the Two Methods 
Let us compare these two methods using data published in both 
papers. Table 1 shows the results based on variances and corre- 
lation coefficients published in Chavez et al. (1982; their Tables 
I and 11). The first three best combination obtained from OF 
ranks 10,8, and 3 by sI and the first three best combinations 
obtained from SI ranks 11,7, and 3 by Om There are five combi- 
nations with ranks I 10 selected from s1 that are within the first 
ten selected from OIE Table 2 shows ranking based on Table 2A 
of Sheffield (1985), where we assumed that m,, = m2, = 125.4. 

The first three best combinations derived from sI ranks 11,8, 
and 1 2  with IOF and the first three best ones obtained from ow 
ranks 6,16, and 17 with SI. There are only two combinations 
with ranks 5 10 selected from SI that are within the first ten 
best combinations selected from OIF. 

It can be concluded from the results listed in Tables 1 and 2 
that OIF and SI applied to the same data sets generate different 
results. The origin for the difference will be discussed in the 
next section. Let us first examine the methodology adopted by 
these authors to verify their ranking approaches. In both stud- 
ies, the ranking assessment was subjectively checked by visual 
inspection of RGB color composites of the subsets. All combina- 
tions were systematically inspected in the study of Chavez et 
al. and only the best triplets were selected in the case of Shef- 
field. However, Sheffield refers to the work of Colvocoresses 
(1983) in which many band and color combinations were 
considered. 

The important point we would like to stress is that, in 
almost all circumstances, original data are transformed for RGB 
display to highlight visual contrast in each band. A widely used 
technique consists of stretching linearly each variable (band) 
according to the relation DN' = K(DN - min)l(max - min), 
where DN and DN' are the data values before and after transfor- 
mation, Kis a constant to scale the result to within a given 
dynamic range (usually K = 255), and min and max are the 
minimum and maximum histogram bounds (Lillesand and 
Kiefer, 1994). The min and maxvalues can be obtained statisti- 
cally, for example, in terms of distance in units of standard 
deviation from the average DN. This is the procedure used by 
Chavez et al. in his study, However, under such an operation, 
each transformed band will have the same variance; in other 
words, the band variance effect is removed. Therefore, the data 
inspected visually by Chavez et al. to assign the level of infor- 
mation in each triplet is not necessarily the same as the ones 
used to calculate the Ow values. Applying Equation 1 to the 

3 

transformed data (DN'), the 2 SDi term will be constant for all 
i=l 

combinations and only the correlation term in Equation 1 will 
apply. Note that correlation coefficient values are unaffected 
under this linear stretching transformation. In Table U of Cha- 
vez et al., the first and second ranked subsets do not change 
rank if only the pair correlation term is considered (third 
column). 

In the case of the Sheffield index (Equation 3), it can be 
shown that the determinant of the covariance matrix in the 
stretched system, MDN,, is proportional to the determinant of 
the correlation matrix in the original domain, RDN. Conse- 
quently, the rank assigned to each triplet will be the same for 
both cases (MoN* or RDN). This property is linked to the fact that 
the covariance matrix of standardized variables is equal to the 
correlation matrix. The latter is sometimes referred to as the nor- 
malized covariance matrix. 

An Alternative Measure for Band Selection 
We propose an alternative index that does not emphasize the 
individual band variance in the ranking process. The emphasis 
is on the amount of correlation between band pairs, which 
reflects the level of complementary information. Although it is 
straightforward to eliminate the influence of individual band 
variance by keeping only the correlation term in Equation 2, 
the way the band pair correlation coefficients are combined in 
OIF has no statistical basis. On the opposite end, the Sheffield 
approach offers a tractable theoretical framework. Let us first 
consider the simplest case, p = 2. It can be shown that the 
determinant of a 2 by 2 covariance matrix M can be expressed 
as a function of mij and pq (Anderson, 1958): i.e., 
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By substituting the off-diagonal elements mi  of the covari- 
ance matrix with mjj)"', it can be shown d e r  some alge- 
braic manipulations that a similar formulation can be obtained 
forp = 3: i.e., 

Both Equations 4 and 5 are the product of two functions: 
one that takes into account the individual band variance infor- 
mation (diagonal elements of the covariance matrix), the other 
that considers band pair correlation coefficients. Similarly, in 
Equation 1, the index can be split into two terms. The difference 
noted above (Tables 1 and 2) comes from the different expres- 
sions attributed to each of the two functions. Particularly, the 
difference in the first terms involving the weights attributed to 
individual band variances will produce marked differences in 
ranking. 

In regression, if one band is assumed independent and the 
other one dependent, then p,i2 is referred to as the coefficient of 
determination and represents the fraction of variance of the 
independent variable explained by the dependent variable. 
Note that the interpretation of p$ is more straightforward than 
the piiupon which Equation 1 is based. When the value of pit 
decreases, i.e., when (1 - pi?) increases, the level of redundant 
information between the two variables decreases. Therefore, 
an index based on this quantity is a logical choice for band 
selection. Maximizing (1 - piz) is equivalent to maximizing 
the ratio IM2,,l I m,mjp B~ t&ng the square mot of this ratio, 
IM2,,(112 is proportional to the surface spanned by the data mea- 
sured in the principal axis system, while (miim..)1'2 determines 
the extent of the space spanned by the data in d e  original axis 
system. The same observation applies for Equation 5: i.e., 
1M3x,11'2 is proportional to the ellipsoidal volume spanned by 
the data in the principal axis system and (mii mij ml,k)llz mea- 
sures the volume extent spanned by the data in the original axis 
system. The ratio of these two quantities can be uniquely 
expressed as a function of the correlation coefficients between 
bands. This leads to the following generalization for the alter- 
native index: 

The square root of cI is related to the ratio of the hypervo- 
lume defined by the data scatter measured in the principal axis 
system to the hypervolume defined by the data scatter in the 
original axis system. An intuitive geometrical explanation for 
Equation 6 is that measures how the data subset fills the 
space defined by the size of its projection on each axis in the 
original system (bands). In fact, CI is equal to the determinant of 
the correlation matrix R; CI = l~,,,l with p 2 2. The link with 
the previous section on band stretching for visualization is 
obvious. The higher the value of IR3X31, the higher the value of 
the (standardized) ellipsoid volume and the higher the data fill- 
ing the RGB cube, providing a more colorful image and presum- 
ably indicative of higher information content. Essentially, the 
less the bands are correlated, the greater is the volume they 
define. 

Ranking based on is reported in the last column of Tables 
1 and 2. Ranking based on cI tends to show agreement with OIP 
in selecting the-krst few best combinations:-the two highest 
ranked combinations are the same for both data sets. This con- 
firms the previous observation that individual band variance 
has a much more limited influence on OIF than on SI. 

Statistical Band Selection for Image Classification 
Mausel et al. (1990) analyzed four separability measures among 
six classes to determine the best subset of four bands selected 

TABLE 3. MAUSEL ETAL. (1990) DATASET. COMPARISON OF THE RANK VALUES 
ASSIGNEO BY DIFFERENT METHODS: OIF. SI, (2 ICCII)-', AND CI. 

Band Combinations Rank 

(Mausel et d.) Mausel et d. OF SI  [ZABS(CCi]]-' CI 

from an eight-channel video system for a parametric classifica- 
tion of an agricultural area. The divergence, the transformed 
divergence, the Bhattacharyya, and the Jeffreys-Matusita dis- 
tances were considered. The number of possible four-band 
combinations is 70. The classification accuracy was deter- 
mined using a supervised maximum-likelihood classification 
method. Their study shows that both Jeffreys-Matusita and 
transformed divergence distances predict the best combina- 
tions for classification. They have also evaluated band selec- 
tion based on eigenvector analysis as well as band variance 
size considerations. They concluded that eigenvector analysis 
provided a "reasonable alternative" because it selected the 
sixth best four-channel combination. On the other hand, rank- 
ing based on (the sum of) individual variance gives poor 
results, the best combination being ranked 56th. Inspection of 
their (Mausel et al., 1990) Tables 1 and 7 reveals that eight of 
the ten best combinations contain a band that accounts for only 
about 3 percent of the total variance. According to Mausel et 
al., ". . . additional future research should consider additional 
comparisons with algorithms which have shown promise such 
as those suggested by Chavez et al. and Sheffield." Such a com- 
parison is presented in this section. Band selection methods 
developed for image visualization are applied to the Mausel et 
al. data. 

Mausel et al. (1990) do not provide the covariance matrix 
of their data set. However, we estimated the covariance matrix 
of their data by performing the inverse of the principal compo- 
nent transformation in Tables 6 and 7 of their published paper. 
Because the measurements in these two tables are rounded off 
to two decimals, the recovered covariance matrix elements 
cannot exactly match the original elements that generated 
Tables 6 and 7. Ranking based on the recovered covariance 
matrix is shown in Table 3 for oIF, SI, the correlation term in IoF 
([ZABS(CCj)]-I), and CI. Combinations having high discrimi- 
nating power are selected by all indices, even though they are 
not optimized for such a specific problem. Six of the first ten 
best combinations based on OIF are contained in the top six best 
combinations. However, the first best combination (1,4,7,8) 
ranks fifth for all three indices. Ranking relying uniquely on 
correlation (the last two columns) give results comparable to 
OIP in that six ([ZABS(CCj)]-I) or seven (IR() combinations with 
assigned ranks less than or equal to 10 are among the ten best 
combination determined by Mausel et al. (1990). Ranking based 
on SI provides results that are slightly inferior to the other three 
indices. Three of the first ten best combinations based on sf are 
contained in the top six best combinations. It is apparent that 
removing the individual variance factor from \MI results in a 
much more pronounced effect on the ranking selection than in 
the case of IOF. Although the best results are obtained with sepa- 
rability measures, those indices relying mainly on inter-band 
correlation may constitute a reasonable alternative to predict 
useful subsets for classification. 
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Band Subset Size Determination 
An assumption behind band selection is that a reduced number 
of bands can minimize redundancy and can "closely" repre- 
sent the original data set in terms of information content. No 
procedure is described in Sheffield (1985) and Chavez et al. 
(1982) for selecting the size of the subset that will retain an 
amount of information close to that in the original data. How- 
ever, Sheffield (1985) has shown that maximizing the determi- 
nant of the covariance matrix is equivalent to selecting the 
band subset having the maximum volume, as well as the maxi- 
mum entropy if N-dimensional normal distributions are 
assumed for the data. Because the determinant of the correla- 
tion matrix is equivalent to the determinant of the covariance 
matrix of the standardized data, the same conclusions apply for 
1RJ. An inspection of the behavior of IRl as a function of the sub- 
set size can therefore serve as a guide for selecting the subset 
size. Consider the intuitive geometric explanation furnished 
above. As the subset size increases, if the added variable is 
highly correlated with some others, the volume of the hyper- 
cube in the original domain will increase much faster than the 
volume of the hyper ellipsoid it "encloses," thus generating a 
marked decrease in IRI. On the other hand, the less the added 
variable is correlated with the other variables, the more the 
value of IRI remains high. Table 4 presents max(lRpxpI) as a 
function of p derived from the recovered covariance matrix of 
Mausel et al. (1990). It can be seenthat max(lRpxpl) drops rap- 
idly with p. The value of rnax(lRpx I) becomes rather small for 
a subset of more than five bands. ~ b i s  is not far from the choice 
of Mausel et al. (1990). They have restricted their subset size to 
four bands based on considerations which are not directly 
related to their data set. 

Discussion 
An advantage of CI (and SI) over [ZABS(CC3]-l and O F  is its 
robustness against the existence of m~ltico~linemit~. Consider 
the following correlation coefficients ( p  = 3): fi, = 0.96, h3 = 
0.8, and A, = 0.6. The value of IRI for this specific case is exactly 
zero (so as for IMI; see Equation 5). In regression, this indicates 
the existence of multicollinearity, meaning that the variance of 
one of the three bands can be entirely (100 percent) explained 
by a linear function of the other two (Edwards, 1979). Such a 
case remains undetectable under OF. Another advantage of cI is 
its physical interpretability in terms of standardized hypervo- 
lume size. Moreover, its use for band size determination does 
not find its equivalent under the other two indices. 

There are, however, inherent problems related to that 
approach, the most important one being that such techniques 
cannot replace optimum procedures for specific applications 
such as the one developed in Mausel et al. (1990) or Tu et al. 
(1998; and references therein). Different combinations of corre- 
lation coefficients may produce identical index values, 

although they may represent different distribution shapes. 
Also, like the case using principal components, the rejected 
bands (or components) that are ranked very low may, neverthe- 
less, have high discriminating power for specific classes. The 
same conclusion applies for the subset size determination 
procedure. 

Conclusion 
W o  often-cited statistical band selection methods for image 
visualization have been compared and shown not to agree 
when applied to the same data set. This discrepancy is mainly 
caused by the weight assigned to the individual band variance 
term in each index. An alternative index based on the minimi- 
zation of redundant information between bands has been 
introduced. It is in fact a normalized version of the Sheffield 
index. The new index is robust against the existence of multi- 
collinearity. A procedure to help determine an appropriate 
band subset size has also been proposed. Its application on the 
covariance matrix of Mausel et al. (1990) provides satisfactory 
results. Although values of p 5 4 and N 5 8 were considered in 
this paper, the method can be extended, in principle, to higher 
data dimension. However, the number of possible band combi- 
nations increases drastically with the number of bands, 
resulting in unacceptable computational cost. For example, 
with N = 64 and p = 16, the number of band combinations to 
evaluate is on the order of lo1*. 

Statistical band selection methods for overall information 
certainly are important tools for reducing subset size to carry 
out analysis of data sets of high dimension. However, great care 
must be taken in adopting techniques such as the ones 
described here. Although helpful, they cannot replace optimi- 
zation procedures for specific applications. 
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