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Abstract 
This paper discusses the integration of cellular automata (cA), 
principal components analysis, and GIs techniques in simu- 
lating alternative urban growth patterns for land-use planning. 
The simulation of actual cities usually involves multicriteria 
evaluation (MCE) in tackling the problems of complex spatial 
factors. Spatial factors often exhibit a high degree of corre- 
lation which is considered an undesirable property for MCE. It 
is dificult to determine the weights when many spatial 
variables are involved. This study uses principal components 
analysis (PCA) to remove data redundancy among a large set 
of spatial variables and determine the "ideal point" for land 
development. The simulation is based on transition rules that 
are related to the neighborhood function and similarity 
between cells and the "ideal point." Principal components 
analysis helps to deal with a large data set of spatial variables 
for the implementation of the CA model. 

Introduction 
Cellular automata (CA) are discrete spatio-dynamic systems, 
which were first developed by Ulam in the 1940s and soon 
used by Von Neumann to investigate the logical nature of self- 
reproducible systems (White and Engelen, 1993). They have 
been increasingly used in the simulation of complex systems, 
such as biological reproduction, chemically self-organizing 
systems, propagation phenomenon, and human settlements. In 
recent years, a series of urban models based on CA techniques 
have been reported (Batty and Xie, 1994; White and Engelen, 
1993; Wu and Webster, 1998; Li and Yeh, 2000; Li and Yeh, 
2001b). CA models can be used for testing hypotheses, simulat- 
ing urban forms and dynamics, and generating ideal land use 
plans. Most urban CA models are primarily focused on testing 
ideas and exploring the mechanisms of urban growth. It is typi- 
cal to see that a series of local actions can give rise to global pat- 
terns in CA simulation. CA models are able to generate cellular 
cities that have features very similar to those of real cities 
(White and Engelen, 1993). 

Attempts have been made to develop a kind of constrained 
CA model which can be used as a planning tool for urban plan- 
ning. Planning objectives are translated into transition rules 
that are used for CA simulation (Ward et al., 2000; Yeh and Li, 
2001b; Li and Yeh, 2001a). Urban planning usually involves the 
comparison between a set of planning scenarios and develop- 
ment options before making a plan. CA models can produce var- 
ious development options that are dependent on the structures 
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of models and inputs of data. The basic strategy is to properly 
define the structures of CA models that can incorporate planning 
objectives in the simulation. Li and Yeh (2000) have used a con- 
trained CA model to plan for sustainable urban development 
which aims at minimizing agricultural land loss and promoting 
compact development. Various urban forms which are associ- 
ated with different development and energy "costs" can also be 
explored using constrained CA models for testing different 
planning options (Yeh and Li, 2001b). Ward et al. (2000) also 
present a constrained CA model which has been applied to an 
area in Gold Coast, a rapidly urbanizing region on the eastern 
coast of Australia. They demonstrate that CA models can simu- 
late planned development as well as realistic development by 
incorporating sustainability in the simulation. Their study 
shows that economic, physical, and institutional control fac- 
tors can be incorporated to modify, constrain, and prohibit 
urban growth. 

CA models should be a good planning tool for urban growth 
management when the models are integrated with a GIS. Opera- 
tional CA models can be built within a GIS to simulate the 
dynamics of actual urban systems which are driven by a series 
of complicated factors. GIS offer unique capabilities for data 
capturing, storing, and analyzing. The integration of GIS and CA 
can help to solve complex decision problems as they can bene- 
fit from each other (Wagner, 1997). There are numerous factors 
which contribute to the formation of actual land-use patterns. 
A GIS can be used to explore various types of factors that may 
play a role in determining the possible or suitable locations of 
land development. A series of constraints can be defined and 
obtained from remote sensing and GIS to address environmental 
concerns so that sustainable cellular cities can be simulated. 

Usually, numerous factors or criteria are involved in CA 
models to obtain detailed simulation results and solve real- 
world problems. Multicriteria evaluation ( M ~ E )  techniques can 
be employed to handle a number of criteria in decision making. 
M a  techniques began to emerge to solve decision making and 
planning problems in the early 1970s. The planning process is 
becoming more complicated in technical, physical, social, and 
economic aspects. MCE can be used for analyzing the complex 
trade-offs between different alternatives (van Delft and Nij- 
kamp, 1977). 

MCE typically requires that the evaluation criteria be inde- 
pendent of each other (Malczewski, 1999). A high degree of cor- 
relation between evaluation criteria is considered as an unde- 
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sirable property for decision making. Unfortunately, most of 
the spatial criteria used for CA simulation are highly correlated 
due to data redundancy. Principal components analysis (PCA) 
can be used to remove data redundancy. PU is one of the most 
widely used methods for spatial data handling because of its 
simplicity and relative straightforward interpretation (Dunte- 
man, 1989). The method is most suitable for representing com- 
plex relationships among a large number of variables. It can 
transform a set of correlated variables into uncorrelated 
orthogonal variables. This paper examines the integration of 
PCA and CA models in reducing data redundancy among a large 
set of spatial variables for urban simulation and planning. 

The Problems of MCE in GIs Analysis and Urban Simulation 
The analysis of alternative planning options is an essential part 
of plan making (Landis, 1995). It is useful to generate and com- 
pare a set of alternatives before planners can choose a suitable 
plan. The overlay of various layers of maps is a classic example 
of a site search exercise. GIS can be used to facilitate map over- 
lay analysis. However, traditional GIS overlay analyses have lim- 
itations when multiple and conflicting criteria and objectives 
are involved (Carver, 1991). Usually, only a few factors are con- 
sidered in GIS overlay analysis because there are difficulties in 
comprehending more than four to five factors (Janssen and 
Rietveld, 1990). Openshaw et al. (1989) applied GZS overlay 
functions to search a specified region of interest for an area 
suitable for the disposal of radioactive waste. The search was 
based on four factors-geology, population distribution, acces- 
sibility, and conservation. It identified the areas which simulta- 
neously satisfied all the specified criteria. 

Site search can be much improved by integrating MCE with 
GIS [Carver, 1991). MCE can provide GIs with a powerful means 
for performing complex trade-offs on multiple and often con- 
flicting objectives using a large set of criteria. The integration 
can provide a more rational and objective approach to making 
decisions. Weighting spatial criteria is critical in the use of 
MCE. A variety of techniques have been developed for obtaining 
weights (Eastman et al., 1995). The Analytical Hierarchy Proc- 
ess (AHP) developed by Saaty in the 1970s has been considered 
to be very useful in obtaining a relatively consistent weight for 
each criterion (Saaty, 1990). It uses pairwise comparisons to 
acquire the preference of decision makers. 

Recent studies have shown that CA-based approaches have 
wide appeal in the study of urban and regional spatial struc- 
tures (Yeh and Li, 2001b). CA simulation for real-world cities 
needs to deal with multiple spatial factors. It is appropriate to 
integrate MCE into CA for capturing decision-making behaviors. 
MCE can significantly enhance CA data processing capability 
because MCE can investigate a number of choice possibilities in 
the light of multiple criteria and conflicting objectives (Voogd, 
1983). Wu and Webster (1998) present interesting studies that 
show how an integrated MCE-CA model can conveniently 
explore urban forms under different development regimes. 

Not enough attention has been paid to the possible correla- 
tion between different layers or criteria in many GIS and CA 
applications. Correlation may not be apparent when only a few 
dimensions of spatial variables or criteria are used for decision 
making. However, there is a high probability for spatial factors 
to overlap among each other and cause data redundancy. Many 
problems of spatial search will inevitably involve a large range 
of alternatives and criteria (Carver, 1991). For example, Bauer 
and Wegener (1977) use 240 evaluation criteria (variables) for 
each zone of a city to represent the demographic, employment 
structure, land-use environment, and infrastructure for a spa- 
tial decision model. At least 12  spatial layers are listed in the 
California Urban Futures (CUF) Model, which is a GIS-based 
urban simulation model (Landis, 1995). Sixteen spatial factors 
are selected as criteria for sites evaluation for the disposal of 

- 
Figure 1. Flowchart of CA simulation based on principal com- 
ponent analysis. 

radioactive waste (Carver, 1991). However, there is little consid- 
eration for the possible correlation between each criterion in 
these studies. A weighted linear combination of various layers 
is the most commonly used method in dealing with these multi- 
ple factors (Carver, 1991; Eastman et al., 1998; Wu and Web- 
ster, 1998). 

It is inadequate to carry out CA simulations based on the 
direct use of MCE when there are correlated spatial variables. 
The correlation of factors may result in the malfunction of the 
weighting for M ~ E  by "double counting" similar variables. Fur- 
thermore, the models are difficult to implement because 
weights or parameters cannot be easily determined when too 
many factors are involved. It is also not easy to interpret the 
results by directly including all these factors in CA models. 

Methodology 
Principal components analysis (PCA) can be integrated in CA 
simulation to tackle the problem of correlation among many 
layers of spatial data. The method is especially useful in reduc- 
ing the data volume of remote sensing images for better classifi- 
cation which have many bands or channels (Li and Yeh, 1998). 
The compression has practical advantages for CA simulation 
because principal components can pack most of the variance 
within a small number of eigen channels. The new variables 
that contain the information from the original data set can be 
used as site attributes for CA simulation. 

The model is based on the integration of principal compo- 
nents analysis and for the simulation of various develop- 
ment scenarios (Figure 1). First, remote sensing and G I ~  are 
used to provide spatial information, such as various types of 
proximities (site attributes) and the neighborhood function in 
terms of development quantity. These types of spatial variables 
are the basis for urban simulation (Wu and Webster, 1998). Sec- 
ond, PCA is carried out to remove data redundancy so that the 
"double counting" can be avoided in the CA simulation. The 
"ideal point" is then defined from the component images for 
computing the similarity between the target cell and the "ideal 
point." Planning objectives correspond to different sets of 
weights which are also used to calculate the similarity. Alterna- 
tives of urban growth are simulated based on the transition 
rules that are defined according to the neighborhood function 
and the "similarity." 

The simulation of actual urban and regional growth should 
involve a large number of spatial variables. The first step is to 
examine the criteria that are important in determining urban 
simulation. A set of criteria can be identified to reflect various 
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aspects of environmental and resource settings, and different 
planning objectives. The criteria should be problem specific. 
There are no universal techniques available for selecting them. 
The set of criteria should be operational, complete, and under- 
standable. If the number of decision criteria is very large, deci- 
sion makers will encounter great difficulties in assigning value 
judgments or weights (van Delft and Nijkamp, 1977). Some 
form of standardization for criteria scores is necessary to 
enable meaningful comparisons. A common way of standard- 
ization is to transform the scores into a normalized scale (i.e., 
1 = maximum, 0 = minimum) using the maximum and mini- 
mum values (Carver, 1991; Eastman, 1995). 

A large set of spatial variables needs to be defined for most 
of the spatial decision models due to the complexity of the real 
world (Bauer and Wegener, 1977; Landis, 1995). It is expected 
that there is significant correlation between various layers of 
spatial information that are used to determine urban growth. 
Principal components analysis (PCA) can be employed to 
examine correlation and reduce data redundancy. PCA is a lin- 
ear transformation of data which rotates the axes of variable 
space along lines of maximum variance. The rotation is based 
on orthogonal eigenvectors of the covariance matrix generated 
from a sample of original data. Although n number of principal 
components may be acquired in the analysis, the first few prin- 
cipal components usually account for a high proportion of the 
variance in the original data. Standard PCA, which has been 
widely used for remote sensing applications, can be integrated 
in the CA simulation. The transformation of n layers of spatial 
data can be carried out using the following equation (Gonzalez 
and Wintz, 1977): 

where PCij is the component score of the jth principal compo- 
nent for cell i, Xik is the value of the kth criterion or layer for 
cell i, and EN is the element of the eigenvector matrix at row k 
and column j. 

The eigenvectors and eigenvalues for the linear transfor- 
mation is mathematically derived from the covariance matrix 
by the following equation: 

where COV is the covariance matrix, A is the diagonal matrix of 
eigenvalues, E is the matrix of eigenvectors, and T is the trans- 
position function. 

Principal components are used as the site attributes for the 
CA simulation. A "grey-cell" CA model is proposed here for 
urban and environmental planning based on principal compo- 
nents. The model can be used for a variety of environmental 
planning purposes. An example is to find suitable locations for 
land development to reduce environmental impacts. Tradi- 
tionally, CA simulation only uses a binary value to address the 
status of conversion based on the calculation of probability. 
The probability of conversion is calculated based on some kind 
of neighborhood function. Usually, the probability is further 
compared with a random value to decide whether a cell is con- 
verted or not (1 for converted and 0 for non-converted). In our 
model, the status of a cell has a continuous "grey value" 
between 0 and 1 to represent the stepwise selection or conver- 
sion process. A cell will not be suddenly "selected or con- 
verted for land development. The "grey value" is calculated 
based on the cumulative equation 

where G is the "grey value" for development which falls within 

Criterion I xfm 

Figure 2. Transformation of coordinate systems for two vari- 
ables and the 'ideal point." . 

1 

the range of 0 to 1 at time t, and i is the location of the cell. The 
simulation will stop when t reaches the final time To. A candi- 
date cell will not be regarded as a developed cell until its "grey 
value" reaches 1. The value should be assigned to 1 when it is 
greater than 1 during the calculation. AO is the gain of the 
"grey value" at each loop. ,' 

The "grey values" can allow various kinds of spatial crite- 
ria to be easily embedded in the CA model. The novelty of the 
model is to calculate thy increase of the "grey value" based on 
the similarity between a candidate cell and the "ideal point" 
usingprincipal components as site attributes. The "ideal point" 
is the hypothetical cell that has the best criterion scores for all 
criteria (Figure 2). It will generate the highest amount of gains 
when it is converted for development. The "ideal point" in the 
variable space can be expressed as 

where XpBX is the,knaximum score for the kth criterion. 
The attributes for the "ideal point".in the principal compo- 

nents space can be obtained by the transformation using Equa- 
tion l. The transformed "ideal point" is 

5 = (PCP, PC!, ..., PC?, ..., PC%) 

where PC! is the transformed score of the "ideal point" for jth 
principal component. 

The distance from a candidate cell to the "ideal point" can 
be measured based on principal components. A candidate cell 
that is more similar to the "ideal point" in terms of site attri- 
butes will have a faster rate of urban growth. This can ensure 
that greater benefits can be achieved. As discussed above, the 
attributes have been compressed into a few major principal 
components, but they still contain most of the original informa- 
tion. The principal components are then used to calculate the 
similarity based on a form of Euclidean "distance." The "dis- 
tance" is given by 

where difis the "distance" between cell i and "ideal point" 6 
based on the attributes of m components, PGj is the value ofjth 
component for cell i, wj is the weight for the jth component, and 
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PCP is the transformed score of the "ideal point" for the jth 
principal component. The weight wjis used here to address the 
importance of a component in influencing urban growth. A 
component associated with a higher value of weight means that 
more importance has been assigned to the component. Differ- 
ent sets of weights can be prepared for different planning 
objectives. 

The similarity (SIM) is given by 

where dzm is the maximum value of di5. 
The similarity is normalized to the range of 0 to 1. A cell 

with the normalized value of 1 represents that it is most similar 
to the "ideal point." In contrast, a cell with the value of 0 repre- 
sents that it is totally not similar to the "ideal point." The 
essential part of the CA model is to calculate the increase of 
"grey value" (AG) based on the neighborhood function and 
the similarity. 

The transition rules consist of two parts. The first part is 
the traditional neighborhood function which counts the num- 
ber of developed cells in the neighborhood. There is a higher 
probability for conversion when a cell is surrounded by a 
larger number of developed cells (Batty, 1997). The second part 
is related to the similarity between a candidate cell and the 
"ideal point." A cell with a larger value of SIM (closer "dis- 
tance") means that the cell is more similar to the "ideal point," 
and a proportionally higher growth rate of "grey value" should 
be applied to the cell. 

The first part is to address the driving force of growing as 
usual, while the second is to reflect environmental settings and 
regulations for idealized growth patterns. The second part is 
very useful for addressing a series of environmental and 
resource issues that can be used to generate an idealized urban 
form. The increase of "grey value" should be given by 

where qf is the total number of developed cells in the neighbor- 
hood Nat time t, 1 is the radius of the circular neighborhood, and 
k is the parameter for power transformation. 

The similarity is dynamically updated at the end of each 
iteration. The similarity is partially determined by the neigh- 
borhood function, fi(qf, N), which is changing during the simu- 
lation. At each iteration, the number of cells developed in the 
neighborhood will be counted and the neighborhood function 
will be recalculated accordingly. 

A stochastic disturbance term is also added to represent 
unknown errors during the simulation. This can allow the gen- 
erated patterns to be closer to reality. The error term (RA) can be 
given by (White and Engelen, 1993) 

where y is a uniform random variable within the range {O,l], 
and a is a parameter to control the size of the stochastic pertur- 
bation. a can be used as a dispersion factor in this simulation. 

Finally, by adding Equation 9 to the model, Equation 8 is 
revised as 

At each iteration, the increase of "grey value" will be calcu- 
lated to determine urban growth. The increase in the number 
of converted cells in the neighborhood will cause the increase 
of "grey value" for the central cell. The increase of "grey value" 
is also subject to other site attributes by using the similarity of 
"ideal-point" approach. Cells that have a "grey value" equal to 
1 will be converted into developed cells at each iteration. Dif- 
ferent urban forms can be formulated when different sets of 
weights are used in the simulation. 

According to Equation 10, it seems that urban expansion 
will not stop because AGj is always positive and ultimately all 
cells will be developed. However, this will not happen because 
AGf will become much smaller with time. The cells close to the 
"ideal point" will be first converted. The remaining cells will 
be further away from the "ideal point" and the value of similar- 
ity will drop. As a result, the growth rate will become much 
smaller as cities grow. This is similar to reality because cities 
will not encroach on all available land because of a series of 
constraints. 

The results of CA simulation are very sensitive to the values 
of the modeling parameters (Wu, 2000; Yeh and Li, 2001b). A 
way to obtain suitable parameter values is based on calibration 
procedures (Li and Yeh, 2001b). Calibration is important for 
realistic simulation although it is difficult for dynamic models. 
In most situations, parameter values are intuitively given to 
generate plausible simulation patterns, especially for planning 
applications. Sensitivity analysis can be carried out to study the 
effects of parameter values. It is found that the parameter k can 
be used to generate more discriminated growth patterns. Stud- 
ies have indicated that non-linear transformation of suitability 
or constraints is useful to discriminate growth patterns (Wu 
and Webster, 1998). A series ofkvalues (e.g., k = 1,3,5, 7,lO) 
can be used in a power transformation. A higher value of k can 
result in more discriminated patterns (Li and Yeh, 2000). The 
power transformation of the similarity canbe applied to gener- 
ate discriminated patterns. The definition of neighborhood can 
also affect simulation results. A circular neighborhood is more 
adequate than a rectangular one because the former has no bias 
in all directions (Li and Yeh, 2000). The parameter I decides 
the size of neighborhood for counting the neighborhood effects. 
Usually, there are not too many choices for the determination 
of the value. For example, the neighborhood is only 3 by 3 cells 
in Wu and Webster's (1998) model. The parameter a i s  used to 
control the size of perturbation. Studies indicate that a larger 
value of a can result in a more random and dispersed pattern of 
development (White andEngelen, 1993; Yeh and Li, 2001b; Li 
and Yeh, 2001b). Therefore, some reasonable parameter values 
can be defined to generate alternative patterns for testing vari- 
ous planning options. 

Model Implementation and Results 
Study Area 
The model was tested in Dongguan, a very fast growing region 
in the Pearl River Delta of southern China. The study area 
covers 2,465 km2 and has experienced a tremendous speed 
and scale of urban development in the 1990s (Yeh and Li, 
1997; Li and Yeh, 1998; Yeh and Li, 2001a). It consists of the 
city proper and 29 surrounding towns. Remote sensing and 
GIS data were used to provide the basic information for the 
simulation. The 1988 and 1993 TM Landsat images were clas- 
sified to retrieve land-use and land-use change information 
(Li and Yeh, 1998). 

The PCA-CA model can help planners to compare different 
development scenarios for different planning objectives. It is 
used to simulate alternative land development patterns of 
Dongguan from 1988 through 1993 according to different 
planning objectives. The simulation results can be compared 
with the actual development that has taken place in the same 
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period to see what improvement could be made. This can pro- 
vide guidance for future development and planning so that 
the environmental impacts can be minimized. 

The GIs package, ARCIINFO GRID, was used as the platform 
to develop the PCA-CA model using its Arc Macro Language 
(AML). The simulation was cell-based and each cell has an 
area of 50 by 50 m2 on the ground. The direct development of 
CA models within a GIS package can allow the model to gain 
access to a rich set of spatial information easily. Spatial data 
and modeling results can be seamlessly exchanged for further 
analysis based on this framework. The CA model can be 
treated as an extension of GIS analysis functions. Although CA 
models can be independently developed outside a GIS pack- 
age, the integration may have some limitations, e.g., loss of 
map information and difficulties in data exchange. 

A GIS database that contains land-use information from 
remote sensing and vector layers of transportation, such as 
the major urban center and town sub-centers, railways, roads, 
and rivers, was built to provide the initial condition and con- 
straints for the simulation. Some important categories of land 
use, such as wetland and forest, were identified from the 
classification of remote sensing images. 

SpaMal VarlaMes and PCA Analysis 
The first step was to obtain and examine the spatial factors 
that play an important role in influencing urban develop- 
ment. Neighborhood functions are often used to address the 
influences of neighboring activities or services on develop- 
ment probability at the central cell. In most situations, the 
intensity of the influences can be expressed as a distance 
decay function. For example, the probability for residential 
development at a site can be related to available services and 
amenities, such as schools, hospitals, transportation, and 
parks. The proximity to these facilities should be measured 
for the prediction of possible land-use conversion. 

Some types of benefits and costs can be identified and 
measured with regard to urban growth. Land suitability is a 
convenient indicator to measure these benefits and costs. In 
this study, land suitability is measured by proximity to major 
transportation lines, and major ecological and environmental 
sensitive areas. More environmental factors (e.g., soil types 
and slope) can be added using the PCA approach if required. 

Land development that takes place in land with better 
suitability scores will generate greater benefits and vice 
versa. Development suitability is a key factor for estimating 
probability of land development in a general c A  simulation 
(Wu and Webster, 1998). Various types of development suit- 
ability related to a series of spatial factors can be defined to 
estimate the probability of land development. The amenities 
for urban development may be measured by proximity to 
urban major centers, sub-centers, roads, expressways, rail- 
ways, parks, and rivers. However, a spectrum of environmen- 
tal suitability could also be used as constraints for c A  
simulation to reduce development costs. Environmental 
suitability can be defined using distance decay functions 
according to various objectives, such as the protection of 
drinking water (reservoirs), cropland, orchards, truck farms, 
fishponds, forests, and wetlands. 

It is clear that there is frequently intensive competition 
and conflict for a type of land use to win the best proximity to 
the most desirable amenities. Conventional modeling meth- 
ods have been faced with great difficulties in solving loca- 
tional conflicts when many spatial variables are considered. 
Although MCE can be used to handle multiple variables, the 
method has problems in dealing with a large number of spa- 
tial variables which are usually highly correlated among 
themselves. The PCA method can be used to deal with such 
problem because it gets rid of data redundancy. 

Distance-based variables can be used to indicate spatial 
influences. There are various parameters and options in 
specifying the forms of distance that affect the decision for 
development (Batty et al., 1999). There are four typical func- 
tions of distance influences-an inverse linear function of 
distance, negative exponential, inverse power, or a gamma- 
like function which combines the exponential and power 
(Xie, 1996). The negative exponential function has been com- 
monly used in CA simulations (Wu, 1998; Batty et al., 1999). 

This study identified a total of 13 spatial variables that 
were required as important site attributes for the CA model. 
The first set of six spatial variables was identified to address 
the benefits that can be obtained from a closer distance to 
sources of development attraction, such as the urban center, 
town centers, transportroutes, and rivers: i.e., 

Distance to the major urban center (city proper), 
Distance to town sub-centers (town centers), 
Distance to railways, 
Distance to expressways, 
Distance to roads, and 
Distance to rivers. 

A closer distance to these sources of attraction is preferable 
for urban development because energy and construction costs 
can be saved. These spatial variables (Xd can be defined using 
the negative exponential function 

where Xik is the spatial variable of cell i for the positive criterion 
k, distil, is the distance from cell i to the source of development 
attraction for criterion k, and pk is its respective parameter of 
the distance decay function. A higher value of the parameter 
means that the influences will decrease more rapidly. The val- 
ues of Xik have been adjusted by the exponential function to fall 
within the range of 0 to 1. A higher value of Xik means that it is 
closer to the source of attraction. 

The same measurement was applied for environmental 
and resource protection considerations. The second set of 
seven distance variables was identified for these types of nega- 
tive factors, which address greater costs f0r.a closer distance to 
the sources of environmental and resource protection: 

Distance to cropland, 
Distance to orchards, 
Distance to truck farms, 
Distance to fishponds, 
Distance to reservoirs (drinking water), 
Distance to forests, and 
Distance to wetlands. 

A closer distance to these sources will create disturbances 
or negative effects for environmental and resource protection. 
These spatial variables (XL) can be defined using the following 
negative exponential function: 

where X& is spatial variable of cell i for the negative criterion k, 
distil, is the distance from cell i to the source of environmelital 
and resource protection for criterion k, and pk is its respective 
parameter of the distance decay function. A higher value of the 
parameter means that the influences will decrease more rap- 
idly. The values of Xjk have also been adjusted by the exponen- 
tial function to fall within the range of 0 to I. A higher value of 
XLmeans that it is farther away from the source of environmen- 
tal and resource protection. These 13 spatial variables will be 
used as the original dkta for PCA transformation described by 
Equations 1 and 2. 

Information on the locations of major urban centers and 
town sub-centers, railways, roads, and rivers is retrieved from 
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Principal Components Eigenvalues Percentage of Variance (%) 

I 62.9 44.4 
I1 38.9 27.5 
111 13.5 9.5 
IV 8.5 6.0 
V 6.5 4.6 
VI 3.2 2.3 
VII 2.6 1.9 
VIII 19 1.4 
IX 1.7 1.2 
X 0.9 0.7 
XI 0.5 0.3 
XII 0.3 0.2 
XIII 0.1 0.1 

the vector GIS database and converted into raster format, with 
each cell representing an area of 50 by 50 mZ on the ground. 
The proximity analysis in the GIs tool of ERDAS was carried out 
on the raster database to obtain the 13 distance variables that 
were used for the PCA analysis. 

Thirteen layers of criteria, (Xil, XiZ, XiB, ..., XiI1, XiZf, Xi3', 
...), were created by the transformation of distance variables 
according to Equation 11 for positive factors or Equation 1 2  for 
negative factors. A site with a higher score of a criterion will be 
more suitable for development with regard to the criterion. The 
PCA analysis was carried out to evaluate these criterion layers 
to see if there is any data redundancy according to Equations 1 
and 2. The analysis was carried out using the PCA module of 
the ERDAS image processing software. Table 1 lists the princi- 
pal components that were created from the 13 layers of dis- 
tance variables. Although n output components can be gener- 
ated in the principal components analysis, the first few compo- 
nents account for a high proportion of the variance in this data 
set. It was found that the first five components accounted for 
92 percent of the variance of the original 13 variables. Even the 
first three components contained 81.4 percent of the total vari- 
ance. Therefore, severe data redundancy is exhibited in these 
spatial distance variables. PCA should be carried out to remove 
the data redundancy in a CA simulation which deals with a lot 
of spatial variables. 

Table 2 lists the component loadings for the 13 spatial vari- 
ables. Only the first six components are used for the simulation 
because they contain most of the information. They are labeled 
according to the loadings. It is easy to see that the first compo- 
nent is mainly related to agriculture and thsenvironment, such 

as fishponds, truck farms, and wetlands. The second compo- 
nent is mainly related to transport conditions, such as express- 
ways, roads, and rivers. The third component is mainly related 
to population centers, such as the city proper and town centers. 
There are a couple of advantages for the principal components 
transformation. The transformation can allow similar variables 
to be grouped together with a large proportion of loadings in 
the same component. Suitable weights can be easily defined 
because principal components are independent of each other. 
This can avoid the double counting that may take place in a gen- 
eral MCE. Moreover, there are no restrictions for the number of 
variables because they can be packed into much fewer compo- 
nents. It is much easier to define the weights using a few vari- 
ables. This can allow the CA model to explore a large spatial 
dataset for more realistic simulation. 

The "Ideal Point" and Planning Objectives 
An essential part of the CA simulation was based on the similar- 
ity between a candidate cell and the "ideal point." The "ideal 
point" is a virtual point which has the maximum criteria scores 
for each criterion with regard to development suitability. It is 
the best point that can be used as the reference for development. 
It is used to judge whether a candidate cell is suitable for devel- 
opment based on the similarity between the cell and the "ideal 
point." Therefore, the "ideal point" for development is as 
follows: 

Equation 1 was used to obtain the coordinates of the "ideal 
point" in the principal component space. Only the first six 
principal components are used to calculate the similarity 
because the components contain 94.3 percent of the original 
information. 

According to the PCA transformation, the "ideal point" 
using the six principal components in the new transformed 
coordinate system becomes 

Equations 6 and 7 were used to calculate the similarity 
between a candidate cell and the "ideal point." The similarity 
is also related to the weights for different components. A set of 
weights can be defined with regard to various planning 
objectives. 

Five planning objectives are used in developing planning 
scenarios for the study area. They are 

Principal Components 

I 11 m IV v VI VII VIII IX X XI XI1 XI11 
Ecology & Urban 

Distance Variables Agriculture Transport Centers Rivers Expressways Crops 

City Proper 
Town Centers 
Railways 
Expressways 
Roads 
Rivers 
Croplands 
Orchards 
Truck Farms 
Fishponds 
Reservoirs 
Forests 
Wetlands 
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TABLE 3. WEIGHTS FOR THE DEVELOPMENT OBJECTIVES 

Planning Objectives 

Urban-Center- Transport-Based Ecology and Agriculture- 
Based (city proper (expressways, Cropland- Conservation (truck farms, Economic- 
and town centers) roads, and rivers) Conservation fishpond, orchard, reservoir, Environmental 

Principal Components Development Development Development and wetland) Development Development 

I. Ecology & Agriculture 0.25 
11. Transport 0.25 
111. Urban Centers 1.00 
IV, River 0.25 
V. Expressway 0.25 
VI. Crops 0.25 

weights: 
Most Important-1.00; Very Important-0.75; Important-0.50; Less Important-0.25; Not Important-0 

Urban-center-based (city proper and town centers) 
development, 
Transport-based (expressway, roads, and rivers) development, 
Cropland-conservation development, 
Ecology and agriculture-conservation (truck farm, fishpond, 
orchard, reservoir, and wetland) development, and 
Economic-environmental development. 

This study only uses five planning objectives to illustrate 
the methodology (Table 3). Other objectives can also be easily 
defined in the same way. The first six components were used 
because they contain the majority of the spatial information. 
Different weights were assigned to these components in the 
simulation according to different planning objectives. The val- 
ues of the weights (w) in Equation 6 range from 0 to 1 (1 being 
the most important)  able 3). A development plan can be gen- 
erated by using a set of weights for a planning objective in the 
simulation. Weights are assigned to the components to indi- 
cate their relative importance in a planning objective. A higher 
weight is assigned to a component which is emphasized by the 
planning objective. For example, if the planning objective is to 
protect agricultural land, component VI (crops) with the major 
loadings on crops should be assigned with the highest value of 
1. Components that are less important or not important to the 

planning objective can be assigned with a value of 0.25 or 0, 
respectively. 

Figure 3 shows the similarity between cells and the "ideal 
point" for the planning objective of transport-based develop- 
ment. A cell with a brighter tone means that it is more similar to 
the "ideal point" and therefore is most suitable for the trans- 
port-based development. Under this objective, the land devel- 
opment rate should be proportionally faster in a brighter cell. 

Tho Simulation 
The PCA-CA simulation was carried out using the "ideal-point" 
approach. Five development scenarios were simulated based 
on the above different planning objectives and related sets of 
weights. It is easy to generate more development patterns if 
other sets of weights are used. The initial map for the simula- 
tion was from the land-use classification of the 1988 satellite 
TM image (Figure 4). The model attempts to generate land 
development alternatives from 1988 to 1993 based on different 
planning objectives. For comparison purposes, the actual 
urban areas (built-up areas and development sited) for 1993 
were also obtained from the classification of the 1993 satellite . . -- - -~ - . - - 

TM image (Figure 5). In the simulation of various scenarios of 
urban forms, the total amount of land consumption is kept to be 

Similarity 
1 
most slmiler 

0 
nd sirniter 

Figure 3. Similarity between a cell and the "ideal point" for transport-based 
development. 
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Figure 4. Urban areas of the study area classified from the 

Figure 5. Actual urban areas of the study area classified 
from the 1993 TM image. 

the same as that of the actual development from 1988 through 
1993 for comparison. The simulation will stop when the 
amount of land development reaches this amount. The transi- 
tion rules are mainly based on Equation 10. The radius of the 
circular neighborhood, I, is two cells. The index of power 
transformation, k, is set to a high value (7) to discriminate simu- 
lation patterns. The size of disturbance, a, is set to 1 to allow 
only a small amount of disturbance. The final computation 
time (iterations) To is automatically decided by the total devel- 
opment area which is equal to the actual land consumption 
from 1988 through 1993. The simulation using the above five 
planning objectives for the development from 1988 through 
1993 was carried out using the PCA-CA model. 

Urban-Center-Based (City Proper and Town Centers) 
Development 

This objective just focuses on economic considerations with a 
higher weight applied for the third component (III-Urban Cen- 

348 A p r i l  2 0 0 2  

Figure 6. Urban center-based (city proper and town cen- 
ters) development. 

Figure 7. Transport-based (expressways, roads, and riv- 
ers) development. 

ters). The third component has a large proportion of loadings 
for the variables of city proper and town centers. In the simula- 
tion, cells closer to city proper and town centers have a higher 
priority for land development. There is a large amount of land 
development in the northwest part of the alluvial plain which 
is close to the urban centers (Figure 6). 

Transport-Based (Expressways, Roads, and Rivers) 
Development 

A higher weight is used for the second component (II-Trans- 
port) which has a large proportion of loadings for the variables 
of expressways, roads, and rivers (Table 2). Figure 7 shows the 
simulation result in which land development is concentrated 
near the expressway and rivers across the western part of the 
study area. As a result, most of the fertile agricultural land will 
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Figure 8. Cropland-conservation development. 

Figure 9. Ecology and agricultureconservation (truck farms, 
fishponds, orchards, reservoirs, and wetlands) develop 
ment. 

be lost although this type of development can generate greater 
economic benefits in the short term. Under this situation, food 
has to be imported from other regions because most of the 
agricultural land has been consumed. 

Cropland-Conservation Development 

Cropland conservation can be realized by putting a higher 
weight on the sixth component (VI-Crops) which has a large 
proportion of loadings for the cropland variable. Cropland will 
be best protected if this alternative is realized (Figure 8). The 
CA model can be used to find alternative locations for develop- 
ment so that food production capabilities can be reserved for 
the region. 

Figure 10. EconomicenvironmentaI development. 

Ecology and Agriculture-Conservation (Truck Farms, 
Fishponds, Orchards, Reservoirs, and Wetlands) Development 

The first component (I-Ecology and Agriculture) has a large 
proportion of loadings for the variables of truck farms, fish- 
ponds, orchards, reservoirs, and wetlands (Table 2). Stronger 
concerns for ecological and agricultural protection can be real- 
ized by putting a higher weight for the first component (Figure 
9). The loss for the ecological and agricultural systems will be 
reduced according to this alternative. 

Economic-Environmental Development 

There are severe conflicts between economic development and 
environmental conservation for most situations. A compro- 
mise objective will help to find an acceptable solution for both 
environmental conservation and economic development. 
Higher weights are given to the first (I-Ecology & Agriculture), 
second (11-Transport), third (HI-Urban Centers), and sixth (VI- 
Crops) components. The CA model is able to find suitable loca- 
tions for reducing the conflicts as much as possible (Figure 10). 

Assessment of the potential impacts of each scenario can 
be carried out using GIS overlay analysis. Table 4 shows the 
environmental impacts of land developments that are associ- 
ated with different planning scenarios. It is found that the 
Cropland-Conservation Development scenario has the mini- 
mum loss of valuable cropland and forest. It consumes only 70.8 
percent of what has been consumed by the actual development. 
This is followed by the Economic-Environmental Develop- 
ment scenario, which is 74.9 percent (Table 4). Planners can for- 
mulate a land development plan for the region based on the 
simulation results of different planning scenarios and their 
impacts on the environment. 

The simulation shows that the model is able to generate 
distinctive urban forms for various specific planning objec- 
tives. A planning objective can be easily realized in the 
dynamic model using the "ideal point" approach. The effects 
of a planning objective on the simulation patterns are apparent 
according to field investigation. The simulation is based on a 
large set of spatial variables (including environmental con- 
straints). Conventional CA models have problems because 
weights cannot adequately provide for correlated variables. 
The proposed model can deal well with the many environmen- 
tal constraints which are quite commonly used in land-use 
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TABLE 4. THE LOSS OF ~MPORTANT LAND RESOURCES FOR THE SIMULATED DEVELOPMENT SCENAR~OS 

Loss of Important Land Resources (in hectare) 

Develo~ment Scenarios Cropland Forest Total - - 

a) Urban-Center-Based (city proper and town centers) Development 12,701.0 (91.3%) 1,071.2 (105.8%) 13,772.2 (92.3%) 
b) Transport-Based (expressways, roads, and rivers) Development 13,168.2 (94.6%) 1,039.1 (102.6%) 14,207.3 (95.2%) 
C) Cropland-Conservation Development 9,503.5 (68.3%) 1,073.0 (106.0%) 10,576.5 (70.8%) 
dl Ecolo~v and Aericulture-conservation Development 12,129.6 (87.2%) 680.0 (67.2%) 12,809.6 (85.8%) --, ". " 
e) Economic-Environmental Development 10,481.5 (75.3%) 694.0 (68.5%) 11,175.5 (74.9%) 
Actual Land Development 13,915.8 (100.0%) 1,012.6 (100.0%) 14,928.4 (100.0%) 

*Figures in parentheses are percentage of land consumption compared with actual land development 

planning. Planners can draw up land-use plans based on these using dynamic criteria in the simulation so that exterior factors 
simulation results in satisfying different planning objectives. can be incorporated in the model. 

Concluslon 
CA models can be used as a planning tool because they are able 
to produce alternatives for urban planning and environmental 
management. There is no single solution for a simulation 
because transition rules can be defined in many possible ways. 
This paper presents a CA model which is based on the integra- 
tion of principal components analysis and GIs. A large set of 
spatial criteria is frequently used in decision making and spa- 
tial analysis which can make use of remote sensing and GIs. 
However, little attention has been given to the possible correla- 
tion between different spatial variables or criteria in many GIs 
and CA applications. In this study, 13 distance-based spatial 
variables (criteria) are defined to represent various economic 
and environmental factors that are used in the simulation of 
urban growth. The measurement of these criteria is facilitated 
by the integration of remote sensing and GIS. These criteria 
seem to be uncorrelated in their objectives and forms. How- 
ever, the study shows that there is severe correlation between 
these criteria based on the principal components analysis. The 
PCA-CA model provides a useful planning tool for exploring var- 
ious possible urban forms based on a large set of environmental 
constraints that could be considered in land-use planning. 

This method is better than the MCE-CA method because it 
can remove data correlation and improve the performance of a 
simulation. It is easier to define weights when only a small set 
of components is used to replace the original large set of spatial 
variables. The weights can be easily defined without double 
counting of similar criteria. The simulation time is much faster 
using the compressed data. This model does not have limita- 
tions on the number of spatial variables that can be used. Fur- 
thermore, this method is not limited to CA simulation but can 
also be applicable to general GIs site-search applications. The 
PCA analysis and the "ideal point" approach can be applied to 
deal with the common problems of spatial correlation in site 
search. 

The model also uses "grey cells" which have been used in 
our previous models to represent the continuous land develop- 
ment process (Li and Yeh, 2000). It is very easy to incorporate 
various kinds of spatial variables and calculate similarity 
based on "grey cells." The model can deal with complicated 
resource conditions and environmental restrictions that are 
often encountered in land-use planning. It can be developed as 
an extended function of GIs and can be used as a useful plan- 
ning tool for urban planning and environmental management. 

In this study, the criteria are rather fixed because exterior 
factors or interventions are not included in the model. For 
example, the development of new roads can change the devel- 
opment patterns. The model is able to deal with the changing 
environments by using dynamic criteria. This can be done by 
recalculating the principal components when environment set- 
tings have changed. Further studies should be carried out for 
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