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Abstract 
Coastal areas comprise some of the world's most important 
and sensitive ecosystems. Although optical remote sensing 
systems have demonstrated an ability to map land cover in 
many coastal environments, spectral confusion has also been 
reported. The parameters of SAR imagery suggest that 
combinations of SAR and optical data may improve land-cover 
classification accuracy. Seven satellite SAR data sets were 
merged with TM data using four techniques. These were tested 
by classifying 11 upland and wetland land covers in a rapidly 
urbanizing coastal area of the northeast United States. Not 
all SARITM combinations bettered the accuracy obtained using 
 d data alone. In general, simple techniques improved accuracy 
more than did complex image merge methods. Although one 
SAR image proved superior overall, improvement in detection 
accuracy varied among individual land-cover categories and 
sAR data. The results point to the possible benefits of 
hierarchicalllayered classifications. 

Introduction 
Coastal areas comprise some of this planet's most complex and 
productive ecosystems (Mitsch and Gosselink, 1993). Around 
60 percent of the world's total population lives in the narrow 
coastal strip between sea level and 200 m above sea level 
(Cracknell, 1999). Focal points for human culture, these areas 
have historically been among the world's most dynamic envi- 
ronments. As human population networks expand inland, 
large natural area tracts are sub-divided and developed. The 
result is a complex ecosystem in transition-a fragmented 
landscape consisting of a mixture of natural and cultural land 
cover. For proper environmental management of these areas, 
land-cover information that can be obtained and updated in a 
timely manner is critical. 

Numerous investigations have shown that optical remote 
sensing systems can be used to classify and map land cover in 
coastaI environments (Jensen et al., 1993; Henderson et al., 
1999). However, spectral signature confusion among optical- 
sensor-based land-cover categories has been reported along 
with degraded classification accuracy. For example, parking 

F.M. Henderson is with the GIS and Remote Sensing Labora- 
tory, Department of Geography and Planning, University at 
Albany, The State University of New York, Albany, NY 12222 
(f.henderson@albany.edu). 

R. Chasan is with the City of Scottsdale GIS, 3629 N. Drinkwater 
Blvd., Scottsdale, AZ 85251 (rchasan@ci.scottsdale.az.us). 
J. Portolese is with Viewpoint Engineering, 500 West Com- 
mings Park, Woburn, MA 01801. 
T. Hart, Jr., is with the New York State Department of Health, 
Albany, NY 12203. 

lots, sandy beaches, building surfaces, and tilled fields often 
appear spectrally similar as do some forested and forested wet- 
land areas (Kershaw and Fuller, 1992; Henderson et al., 1999). 

Satellite-based synthetic aperture radar (SAR) systems have 
recently shown potential for identifying land-cover types as 
well as particular land-cover conditions (Dobson et al., 1995a; 
Dobson et al., 1996; Schrnullius andEvans, 1997). The bio- and 
geo-physical parameters of SAR suggest that active microwave 
sensors contribute electrical and morphological information 
that, used in concert with optical sensors, may reduce optical 
classification confusion among urban and non-urban land cov- 
ers (Taket et al., 1991; Dong et al., 1997; Henderson and Xia, 
1998). 

Efforts to combine optical and SAR imagery have been 
reported. Pohl and Van Genderen (1998) provide an extensive 
review of image fusion concepts, methods, and applications 
based on some 169 articles. Included among the potential ben- 
efits discussed were image sharpening, increased temporal 
andlor spatial resolution, improved registration accuracy, fea- 
ture enhancement, and improved classification. Yet within this 
body of research relatively few works have focused on SAR 
imagery of urban and rapidly urbanizing coastal areas. 

C-band SAR data, especially HH-polarized imagery, have 
been reported as effective in delineating herbaceous and for- 
ested wetlands from other land-cover types in rural areas (Kas- 
ischke et al., 1997; Wang et al., 1998; Murphy et al., 2001; 
Baghdadi et al., 2001). Toll (1985) reported the benefits of com- 
bining SAR and Landsat M ~ S  data to map urban land cover in 
Denver, Colorado. Dong et al. (1997) and Henderson and Xia 
(1998) have analyzed the attributes of SAR that suggest it would 
be useful in urban monitoring. A search of the literature indi- 
cates that no work has concentrated specifically on urban 
coastal areas to report on the merits of merging optic all^^ data 
in such environments. 

This paper presents the results of digital image land-cover 
classifications in a complex, rapidly urbanizing coastal eco- 
system using combinations of satellite-based SAR and Landsat 
Thematic Mapper (TM) images. The purpose was to quantita- 
tively evaluate s ~ ~ / o p t i c a l  image merge techniques that use the 
spectral and in some cases spatial resolution contributions of 
SAR data in defining wetland and upland land-cover types in 
urban coastal regions. The study gives particular attention to 
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the contribution of C-band SAR data to resolving optical spec- 
tral confusion between wetlands and non-wetlands and 
between urban and non-urban land covers. 

Study Area and Methodology 
The Carmans-Forge Rivers region of Long Island, New York 
served as the focus of this study (72.88°W; 40.77"N) (Figure 1). 
The area is typical of many American coastal areas at the con- 
fluence of urban sprawl and natural/agricultural open spaces. 
The 172-sq-km area contains a mix of rural and urban land 
cover as well as one of the island's major drainage systems. 
Open and natural areas include woods, bare ground, wetlands, 
pastures, grasslands, and cultivated fields. These natural areas 
are intermixed with urban development and impervious sur- 
faces in a collage of heterogeneous land cover. Between 1940 
and 1990 population in this area increased 570 percent; 
between 1980 and 1990 housing units increased 11 percent 
(Chasan, 1998). 

The National Oceanic and Atmospheric Administration 
(NOAA) Coastal Change Analysis Program (c-CAP) has devel- 
oped a protocol and classification system for mapping coastal 
wetlands and adjacent upland land cover for any coastal region 
in the United States based primarily on analysis of Landsat TM 
data (Dobson et al., 1995b). The eleven land-cover categories 
used in this investigation followed C-CAP protocol recommen- 
dations. They included the four wetland classifications present 
in the study area (Estuarine Emergent; Palustrine Emergent; 
Palustrine Scrub Shrub; Palustrine Forested), six upland cover 
types (Bare Ground; Grasslands/Cultivated; Deciduous Forest; 
Coniferous Forest; Impervious Surfaces; Developed) and 
Water. A brief description of their composition is provided in 
Table 1. 

Imagery 
A list of the original image data sets and their characteristics are 
shown in Table 2. In addition, two artificial SAR images were 
created from Principal Components Analysis (PCA) of multiple 
SAR scenes. The intent was to retain the common information 
found in the multiple SAR scenes while reducing the dimen- 
sionality of the data sets to be combined with the TM data. The 
first artificial SAR image combined the F2N and F4N Radarsat 
fine mode images to consider the potential benefit of informa- 
tion contained in high-resolution, multi-date SAR images; the 
second used three Radarsat Standard Mode images (SI, SZA, S T )  
to evaluate the contribution of multiple incident angle data of 
moderate spatial resolution. In each case the first principal 
component of the SAR image suite (PCI) was selected for merger 
with the TM data. 
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Figure 1. Study Area. 
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TABLE 1. LANDCOVER CATEGORIES AND THEIR CHARACTERISTICS 

Category Principal Species and/or Characteristics 

Water Ocean, bays, rivers, creeks, lakes, ponds 
Estuarine Emergent Spartina alterniflora, Spartina patens 

Tidal saltwater marshlands 
Palustrine Emergent Phragmites australis 

Non-tidal permanent wetlands of inland 
freshwater marshes 

Palustrine Forest Acer rubrum, Chamaecypars thyoids 
Non-tidal freshland wetlands with > 

50% tree canopy cover 
Palustrine Scrub Shrub Pinus rigida, Quercus var, 

Chaemaeadaphnae calyculata 
Transition zone between coastal 

freshwater wetlands and pine-oak 
barrens 

Undeveloped with little or no 
vegetation. 

Includes shoreline, landfills, non- 
cultivated tilled farmland 

Pinus spp. 
Contiguous stands of needle-leaf 

evergreen trees 
Quercus spp., Acer spp. 
Contiguous stands of broad-leafed trees 
Managed and unmanaged grasslands, 

cultivated farm land, golf courses, 
cemeteries, large lawns, recreational 
fields 

Mixed class composed of suburban 
development. 

Includes structures, lawns, streets. 
Imperviousness < 80% 

Impervious Imperviousness > 80%. Includes 
parking lots, major roadways, 
commercial and industrial landuse 

All scenes were co-registered to an existing database that 
had previously been rectified and registered using ground con- 
trol points gathered with differentially corrected Global Posi- 
tioning System data. The SAR images were registered using 
cubic convolution resampling; the TM image was registered 
using nearest-neighbor resampling (Heaton, 1998). A 9 by 9 
Lee filter was applied to each of the SAR data sets to reduce 
image speckle (Durand et al., 1987; Lee et al., 1994; Chasan, 
1998). 

Image Combination Techniques 
Two different approaches were used to digitally combine data 
sets: (1) synthesis and (2) concatenation. For compatibility and 
consistency among merged sets of different spatial resolutions, 
the data set with the coarsest spatial resolution was always 
resampled to the data set having the higher spatial resolution. 
In all, four image combination methods were tested. 

Synthetic mergers mathematically join all pixel values to 
create synthetic pixel values. Three synthetic methods were 
tested. Two of these methods employ the addition of SAR to TM 
pixel values in selected bands. They were based on the success 
of previous research in visually delineating coastal features in 
Louisiana (Lewis et al., 1995). The third synthetic technique, 
commonly referred to as image fusion, involves Principal Com- 
ponent Analysis (PCA) and Inverse Principal Component Anal- 
ysis of the data sets. Here, the pixel values of a second data set 
are substituted for one of the principal components of the first 
data set and an Inverse PCA is performed. In this method, the 
values of the second data set are "fused" or distributed through- 
out the remaining bands of the first data set. 

The concatenation merge technique simply adds a single- 
channel data set to a multi-channel data set as an additional 
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TABLE 2. ORIGINAL IMAGE DATA AND THEIR CHARACTERISTICS 

Type Look Direction Incident Angle Pixel Size Polarization Acquisition Date 

Radarsat FZN Ascending 40.3 6.25m HH 16 Apr 97 
Radarsat F4N Ascending 44.6 6.25m HH 08 May 97 
Radarsat S7 Ascending 46.9 24m HH 20 May 97 
Radarsat S2A Ascending 27.5 24m HH 24 May 97 
Radarsat S2D Descending 27.5 24m HH 28 May 97 
Radarsat S1 Ascending 23.1 24m HH 24 Jun 97 
ERS-1 Ascending 23 30m W 25 May 96 
Landsat TM (bands 1-5 & 7) - - 25m - 27 May 97 

"band." In this case, the SAR data were concatenated to the TM pixel value, TMM is the maximum possible TM pixel value 
data. Both the PCA fusion and concatenation techniques have (255), and R-is the maximum 16-bit pixel value (65535). 
been reported to have potential in  optical merges (Chavez Principal Components Analysis produces components 
eta]., 1991; Lozano-Garcia and Hoffer, 1993; Pohl and Van with an arbitrary scale of values in signed floating point format 
Genderen, 1998). with a range, from negative to positive, that may exceed 256 

A brief explanation of each of the four data merge methods integer values. For consistency with the other datasets, all PC 
follows: data were rescaled to 16-bit data format (Equation 4): i.e., 

Image Addition 
P, = (Pi - PMN)* RMAX 

Using TM bands 3,5, and 7, each SAR pixel value was added to PMAX - PMN 
the corresponding TM band 5 and 7 pixel values, respectively 
(Lewis et al., 1995) (Equation 1). The result was a three-band, where P, is the output PC pixel value, Rw is the maximum 
16-bit image: i.e., possible 16-bit pixel value (65535), PMMs the highest PC pixel 

value, P-is the lowest PC pixel value, and Pi is the input PC 
Co = Ti + Ri (1) pixel value. 

where C, is the combined output pixel value, 'I;. is the input TM 
pixel value, and Ri is the input radar pixel value. 

Weighted Addition-A Variation on Image Addition 

Each SAR pixel value was added to the corresponding TM bands 
3 and 5 pixel value after each of the TM bands was increased by 
a common multiple (Equation 2). The common multiple 
employed was 2 (Lewis et al., 1995). The result was a three- 
band, 16-bit image: i.e., 

where C, is the combined output pixel value, 'I;. is the input TM 
pixel value, n is the common multiplier, and Ri is the input radar 
pixel value. 

PCA Fusion 

A Principal Components Analysis was performed on TM bands 
1 through 5 and 7. The resultant data set contained six Princi- 
pal Components bands. The SAR data set was then substituted 
for one of the principal components (e.g., PCI). An Inverse 
Principal Components Analysis was then performed to inte- 
grate the SAR data with the remaining TM data. 

Concatenation 

The Concatenation method added the SAR image as a discrete 
layer to the existing TM layer set. Due to the different radiomet- 
ric scales of SAR and TM digital numbers (sAR 16-bit, TM 8-bit), 
the TM data were proportionately rescaled to 16-bit. This pre- 
vented the SAR pixel values from potentially overwhelming the 
TM values while retaining the original precision of the SAR data 
(Equation 3). The SAR image was then concatenated with the 
new, standardized TM image: i.e., 

z R m  T, = - 
TMAX 

(3) 

where T, is the output TM pixel value, ?;: is the raw input TM 

Imagery Combinations 
The steps described above were used to create ten Image Con- 
catenations, nine Image Additions, four Image Weightings, and 
five PCA Fusion data sets for analysis-a total of 28 image com- 
binations. The combination names and their abbreviations 
used in the text are shown in Table 3. A brief description of the 
selection process follows. 

Concatenation 

Ten SAWTM concatenations were evaluated. The first nine were 
created from all the original SAR and PC SAR data sets. The tenth 
was selected from the PCA Fusion substitution approaches dis- 
cussed below. 

Image Addition 

The first nine concatenation combinations were examined 
using the Image Addition Method. 

Image Weighting 

The outcomes of the Concatenation and Image Addition classi- 
fications led to the testing of four Image Weighting combi- 
nations: the data sets that yielded the three highest Image Addi- 
tion overall accuracy results plus the ERS combination for SAR 
polarization comparison purposes. 

PCA Fusion 

Earlier work evaluating the seven individual SAR data sets 
found that the Radarsat FZN image produced the highest over- 
all accuracy (Henderson et al., 1998). Based on that perfor- 
mance, the Radarsat F2N image was selected for PCA fusion 
with the TM 1 through 5 and 7 image. The first fusion substi- 
tuted the F2N image for TM PC1 as is the normal procedure. In 
effect, the high spatial resolution SAR data values replaced the 
intensity values of the TM data. However, visual examination 
of the combined image set on the computer monitor and the cor- 
responding classification accuracy results suggested that the 
SAR data might be overpowering the optical data. Consequently, 
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Technique Abbreviation 

CONCATENATION 
TM1-5&7 with Radarsat F2N 
TM1-5&7 with Radarsat F4N 
TM1-5&7 with Radarsat S1 
TM1-5&7 with Radarsat SZ Ascending Pass 
TM1-5&7 with Radarsat S2 Descending Pass 
TM1-5&7 with Radarsat 57 
TM1-5&7 with ERS-1 
TM1-5&7 with PC1 of F2N, F4N PCA 
TM1-5&7 with PC1 of S1, S2A, S7 PCA 
TM PC1,2,3 with Radarsat F2N 
IMAGE ADDITION 
Radarsat F2N 
Radarsat F4N 
Radarsat S1 
Radarsat S2 Ascending Pass 
Radarsat 52 Descending Pass 
Radarsat 57 
ERS-1 
PC1 of FZN, F4N PCA 
PC1 of S1, SZA, 57 PCA 
IMAGE WEIGHTING 
Radarsat F2N 
Radarsat F4N 
PC1 of F2N, F4N PCA 
ERS-1 
PCA FUSION 
TM PC2-5&7 with Radarsat FZN replacing 

TM PC1 
TM PC2-5&7 with Radarsat F4N replacing 

TM PC1 
TM PC1-5&7 with PC1 of F2N, F4N PCA 

replacing TM PC1 
TM PC1-5&7 with Radarsat F2N replacing 

TM PC4 
TM PC1,2,3 with Radarsat F2N replacing 

TM PC4 

it was felt that much of the spectral intensity information of the 
TM image might have been lost. That observation led to two 
additional fusion combinations. 

The first of these substituted the SAR pixel values for TM 
P C ~  instead of TMPCI. The intent was to retain the majority of 
optical spectral contribution of the TM scene while fusing the 
SAR contribution in a less dominant manner. The second 
approach used only the first three principal components from 
the TM PC data set and used the SAR data to substitute as the 
fourth band into the inverse PCA. TMPC4, TM PC5, and TMPC6 
were dropped on the premise that they were contributing little 
information and the deletion of these components would 
reduce the dimensionality of the data set. The Radarsat F4N 
image was included to provide a comparison with the F2N 
results and with the PCA of the F Z N / F ~ N  SAR suite. 

Following creation of the merged data sets, a maximum- 
likelihood classification was conducted on each combination. 
A total of 93 training sets were used to define the land cover cat- 
egories. Training set selection was based on an examination of 
1994 United States Geological Survey (USGS) National Aerial 
Photography Program (NAPP) photography (hardcopy and digi- 
tal orthophoto quads), 1994 digital National Wetland Inventory 
data, and field work in the study area to validate land-cover 
conditions contemporary with TM/SAR data acquisition dates. 

Accuracy Assessment 
All classified output data sets were subjected to a common accu- 
racy assessment procedure. A total of 935 accuracy points were 
selected by examination of digital ortho quads derived from NAPP 
imagery and confirmed by contemporary ground verification. 

These accuracy points were used to produce a confusion matrix 
(contingency table) for each data set. Overall Accuracy figures 
and Kappa Coefficients were generated (Table 4) along with Pro- 
ducer's Accuracy (PA) and User's Accuracy (UA) figures. 

The Kappa Coefficient described how well the classification 
performed in comparison to a random correlation and is indepen- 
dent of imagery, sampling types, and classification schemes (Kal- 
khan et al., 1997). Kappa values can range from 0 (random) to 1 
(completely non-random). Monserud and Leemans (1992) 
assigned the following qualitative values to the Kappa statistics 
as interpretive aids: less than 0.4 are poor to fair; values from 0.4 
to 0.75 are fair to very good; and values greater than 0.75 are con- 
sidered very good to excellent. The Z-test for normal distribu- 
tions was used to detect significant differences between 
classified image pairs for the Kappa Coefficients (Sharma and 
Sarkar, 1998). Table 5 shows the comparison of statistical signifi- 
cance among the output datasets. 

PA and UA provide information on omission and commission 
errors. However, as these measures do not reflect the same infor- 
mation it is often difficult to relate the quality of a classification 
procedure within and among data sets. Instead, a Combined 
Accuracy (CA) figure, the product PA*UA, was created to allow 
comparison among entire data sets as well as individual land- 
cover categories within data sets (Table 6). The CA figure gives a 
measure of the land cover's classification quality relative to all 
other land-cover classes in all other images and, of no less impor- 
tance, provides a simple measure of the utility of the data set/ 
technique for the user (Chasan, 1998). 

Analysis and Results 
For comparison purposes it should be remembered that the 
overall accuracy for the TMI through 5 and 7 data set alone was 
79.3 percent. 

TABLE 4. OVERALL ACCURACY AND KAPPA COEFFICIENTS 

Technique Accuracy Kappa 

TM 1-5 & 7 [for reference) 79.30% 0.768527 
CONCATENATION 
c:F2N 82.4% 0.802969 
c:F4N 81.3% 0.779119 
c:S1 78.6% 0.761212 
c:S2A 79.9% 0.775559 
c:S2D 77.9% 0.753094 
c:S7 78.8% 0.763625 
c:ERS 80.6% 0.783821 
c:PCF 82.4% 0.803015 
c:PCs 80.2% 0.779146 
C : T M ~ ~ ~ ~ ~ + F Z N  82.4% 0.803676 
IMAGE ADDITION 
a:F2N 72.0% 0.690113 
a:F4N 68.4% 0.650709 
a:S1 61.7% 0.575245 
a:S2A 65.2% 0.61456 
a:S2D 64.2% 0.603111 
a:S7 63.1% 0.590791 
a:ERS 60.7% 0.56426 
a:PCF 72.0% 0.689245 
a:PCs 65.3% 0.615848 
IMAGE WEIGHTING 
w:F2N 70.1% 0.668679 
w:F4N 66.7% 0.631699 
w:PCF 69.6% 0.662804 
w:ERS 59.7% 0.553094 
FUSION 
f : T M P c ~ ~ ~ ~ ~ + F ~ N  80.5% 0.78301 
f :TMP~23457+F4N 77.5% 0.749681 
f 80.4% 0.781797 
f :TMPC12357+F2N 81.9% 0.79834 
f :TMpcIz3+F2N 81.1% 0.789322 

Bold indicates best results 
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Y = Statistically Significant Difference at 95% Confidence Level. 

TABLE 6. COMBINED ACCURACY PERCENTAGE FOR ALL DATA SETS/LANDCOVER CLASSES 

Rare Conifer Est Emg Grass Pal Emg Pal For Imperv Pal SS Devel Water Decid 

TM1-5&7 88.4% 73.7% 57.9% 72.3% 7.2% 31.2% 54.7% 3.3% 60.1% 89.6% 82.4% 
c:F2N 86.4% 83.8% 55.0% 77.1% 0.0% 41.6% 59.2% 2.6% 78.8% 92.2% 87.2% 
c:F4N 84.6% 79.1% 58.3% 76.7% 0.0% 30.2% 47.6% 1.6% 73.5% 88.6% 88.3% 
c:S1 83.6% 66.9% 53.9% 76.4% 0.0% 27.9% 48.0% 2.0% 74.0% 90.5% 84.3% 
c:S2A 88.5% 72.3% 57.7% 76.2% 0.0% 25.5% 55.4% 0.7% 72.6% 92.3% 86.2% 
c:S2D 86.5% 71.1% 52.1% 80.4% 0.0% 25.9% 49.3% 0.4% 73.0% 82.0% 85.5% 
c:S7 81.8% 74.7% 51.3% 77.4% 0.0% 34.6% 44.2% 2.1% 68.1% 95.1% 84.2% 
c:ERS 84.5% 75.4% 53.8% 76.0% 0.0% 36.8% 52.4% 12.9% 72.9% 86.5% 89.2% 
c:PCF 85.5% 83.2% 56.6% 77.9% 0.0% 35.7% 55.9% 4.2% 81.3% 92.3% 89.4% 
c:PCs 86.4% 81.8% 54.9% 77.4% 0.0% 30.6% 54.7% 0.2% 72.3% 96.0% 82.4% 
c:TMp,-,,,+F2N 70.3% 88.1% 58.7% 80.3% 3.6% 32.7% 71.3% 19.2% 80.3% 95.0% 81.4% 
a:F2N 74.1% 43.3% 20.3% 76.4% 5.1% 31.7% 58.7% 7.9% 70.1% 96.0% 72.3% 
a:F4N 81.3% 43.2% 43.6% 40.5% 7.0% 14.3% 57.6% 6.6% 58.6% 92.2% 58.3% 
a:S1 84.3% 25.6% 16.3% 46.9% 6.1% 8.7% 59.8% 0.3% 42.7% 91.3% 44.8% 
a:S2A 80.4% 40.5% 17.5% 51.9% 4.1% 17.7% 54.4% 2.3% 53.5% 95.1% 50.2% 
a:S2D 87.3% 32.9% 12.2% 40.3% 6.7% 21.3% 53.4% 5.7% 49.5% 97.0% 44.1% 
a:S7 71.1% 29.3% 15.1% 41.3% 3.4% 17.3% 53.6% 6.2% 59.2% 96.0% 43.8% 
a:ERS 82.0% 34.5% 13.0% 37.5% 1.6% 8.3% 59.8% 3.1% 41.8% 78.5% 41.0% 
a:PCF 82.4% 55.1% 28.0% 54.0% 6.3% 21.2% 52.2% 7.2% 63.7% 96.0% 73.5% 
a:PCs 75.6% 33.8% 24.5% 40.8% 1.6% 17.6% 59.2% 2.4% 60.3% 96.0% 54.4% 
w:F2N 66.6% 52.2% 28.2% 68.8% 5.4% 27.8% 47.6% 5.1% 53.6% 95.0% 75.7% 

w:F4N 67.6% 48.3% 40.4% 41.1% 3.7% 15.3% 49.3% 7.8% 46.9% 91.5% 61.2% 
w:PCF 79.4% 60.0% 25.8% 41.8% 1.9% 16.9% 46.7% 10.6% 58.7% 93.2% 69.3% 

w:ERS 66.5% 49.9% 10.6% 31.8% 1.6% 12.3% 48.9% 1.0% 38.0% 79.4% 49.6% 

f:TMPC23457+F2N 80.3% 77.4% 68.1% 76.4% 4.0% 36.4% 58.7% 3.2% 60.8% 95.2% 79.2% 

f:TMPCZ3457+F4N 82.4% 78.6% 60.6% 68.3% 0.6% 20.3% 52.9% 2.4% 54.6% 92.2% 83.5% 

f:TMPCZ3457+PCF 81.4% 79.1% 62.7% 72.4% 3.3% 29.0% 61.0% 6.4% 65.8% 92.2% 81.0% 

f:TMPC12357+F2N 82.1% 85.4% 52.6% 81.6% 2.7% 36.2% 62.8% 3.5% 78.8% 93.2% 86.1% 
f:TMp,,,,+F2N 71.4% 87.3% 58.7% 77.2% 0.0% 33.9% 62.1% 12.7% 81.1% 94.1% 79.4% 

Best accuracy per land-cover class indicated in bold. 

Overall Accuracy ranked highest, from very good to excellent. All Image 
Image Addition and Image Weighting did not produce overall Weighting and Image Addition combinations ranked slightly 
accuracy figures or Kappa Coefficients as high as the PCA lower, ranging from fair to very good. We believe there may be 
Fusion or Concatenation techniques (Table 4). Applying the two reasons for these groupings. The first is that the earlier suc- 
qualitative Kappa ranking criteria described above, the TM cess with these latter two techniques was based on visual 
image, all Image Concatenations and the Image Fusion data sets rather than digital analysis. The human eye is a great integrator 
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of patterns, tones, texture, shapes, sizes, and location-abilities 
not yet readily available in most digital image analysis proce- 
dures. The second reason for the difference may be attributable 
to environmental modulation-features that can be identified 
in one environment and ecosystem are not always equally 
identifiable in another. Certainly, the rural wetland environ- 
ment of coastal Louisiana is markedly different in many ways 
from that found on New York's Long Island. The highest overall 
accuracy attained by the Image Addition technique (72.0 per- 
cent) was achieved by both a:F2N and a:PC, The F2N image also 
produced the best overall accuracy by Image Weighting- 
wF2N (70.1 percent). 

Image  isi ion by PCA proved more accurate than the other 
two synthetic techniques, but less accurate overall than the cor- 
responding Image Concatenation data sets. The f : T M ~ ~ ~ ~ ~ ~ ~  + F2N 
resulted in minor overall accuracy improvements versus the 
original substitution off :-,,,, + F2N (81.9 percent vs. 80.5 
percent). The f : T M ~ ~ ~ ~ ~  + F2N fell into the middle (81.1 percent). 

The highest overall accuracy, 82.4 percent, was achieved 
by three techniques: c:F2N, c:PCF, and c:TMPCIz3 + F2N. These 
results suggest that the computationally intensive principal 
components technique offered no benefit compared to the sim- 
ple concatenation method. The results also suggest that Fine 
Mode SAR'S higher spatial resolution and sensitivity to surface 
roughness and volume scatter were contributing factors to the 
overall accuracy (Table 5). 

Each SAR Image Concatenation was superior to its corres- 
ponding Image Addition counterpart, reinforcing the benefit of 
the simple approach with regard to  loptic tical image combina- 
tion. The c:ERS (80.6 percent) performed slightly better overall 
than c:si (78.6 percent) with a similar incident angle. This is 
apparently attributable largely to ERS' comparative stronger 
ability to identify Coniferous Forest because c:si proved com- 
paratively more accurate in detecting Grasslands while Water 
and all other cover-type accuracies were similar. Among the 
Radarsat image data sets, incident angle proved less important 
than increased spatial resolution in improving overall 
accuracy. 

Combined Accuracy by Land-Cover Type 
The next step was to determine if the trends and results 
observed for overall accuracy were associated with or similar 
for each land-cover type. An examination of the accuracy of the 
different merge techniques for each land-cover category dis- 
closed considerable variation among the different combina- 
tions (Table 6). Among the findings were that Image Weighting 
failed to produce the highest detection accuracy for any land 
cover category. One Image Fusion technique, ~ : T M ~ ~ ~ ~ ~ ~ ~  + F2N, 
resulted in a 68.1 percent combined accuracy for the detection 
of Estuarine Emergent Wetland, the highest for that category. 
Image Addition also generated the highest combined accuracy 
for one land-cover type. The a:F4N detected the most Palus- 
trine Emergent Wetlands (but only 7.0 percent). 

Image Concatenation produced the highest combined 
accuracies for the other nine land-cover categories, but the spe- 
cific SAR/TM combination varied among the land-cover types. 
Some variation of an F2N Concatenation data set was success- 
ful for six cover types: Coniferous Forest (88.1 percent), Palus- 
trine Forest Wetland (41.6 percent), Impervious Surfaces (71.3 
percent), Palustrine Scrub Shrub Wetland (19.2 percent), 
Developed (81.3 percent), and Deciduous Forest (89.4 per- 
cent). The highest combined accuracy for Bare Ground (88.5 
percent) and GrasslCultivated land cover (80.4 percent) was 
generated with concatenations of two different Standard Mode 
SAR images [ c : s z ~  and c:SzD, respectively). Water was detected 
at 96.0 percent accuracy with c:PC,. However, as Table 6 indi- 
cates, almost any merge technique was able to detect Water 
with high accuracy. It is also apparent from the above combined 

accuracy figures that land-cover types were not detected 
equally or at satisfactory accuracy levels for many applications. 

It is assumed that, in an operational situation involving 
optic all^^^ image merging, one initially would select a single 
optical image or image subset (i.e., bands 1 through n), a single 
SAR image, and a single sAR/optical image combination based 
on the optical data and SAR data accuracies. In this case, earlier 
work with the sAR data had found that the F2N image produced 
the highest SAR accuracy (Henderson et al., 1998). Based on the 
findings of this research, the TM 1 through 5 and 7 data set 
(overall accuracy of 79.3 percent) and the c:F2N (overall accu- 
racy of 82.4 percent) would be the preferred initial data sets. 
Table 6 provides the comparison of the combined accuracy of 
the TM data and this TM/SAR Concatenation for each land- 
cover category. 

Observations 
It is apparent that the combination of SAR/TM data using a single 
combination technique does not improve the accuracy of every 
land-cover category compared to using the optical data alone. 
The optimal combination varies by land cover and improve- 
ments range from quite modest to sizable. 

SAR is sensitive to surface roughness/geometry and dielec- 
tric constant (moisture) differences. For example, SAR data 
should provide information about soil moisture and wetness 
conditions that would aid in the discrimination of forested 
wetlands from some upland forest. Sensitivity to geometry and 
surface roughness should assist in the separation of structures 
that might appear spectrally similar to beach or bare ground at 
optical wavelengths. Texture differences at microwave wave- 
lengths could provide data to identify some cultivation, ground 
cover, or canopy conditions. With this in mind, it can be seen 
that, compared to TM data alone, SAR data contributed modestly 
to improved detection of GrassICultivated, Deciduous Forest, 
and Impervious land cover and substantively to Palustrine For- 
est, Developed, and Coniferous Forest land-cover detection. 

Leckie (1998) has shown that the response of deciduous 
and coniferous forests on C-band imagery is complex and 
believes that it is necessary to map by species. Liao and Guo 
(1998) have shown C-band SAR to be sensitive to forest height 
and not density variation. We believe that the improvements 
added by SAR in this study are due in part to the differences in 
morphology, surface canopy, and stand height (the coniferous 
is generally higher) between these two vegetation groups, 
although the relative contribution of each factor is unknown. 
The contribution to Impervious and Developed land-cover 
detection is also due to the sensitivity of SAR to surface 
roughness and signal backscatter, in this case, the morphology 
and spatial densities of buildings and structures. 

What is puzzling is the lack of improvement in the detec- 
tion of Estuarine Emergent and Palustrine Emergent Wetland 
land cover. This may be due to the sparse vegetation density of 
these categories, the lack of foliage and leaf area at this time of 
year (April-May), and the relative water level. Kasischke et al. 
(1997) found that standing water caused forward scatter and 
lower radar backscatter from ERS imagery of herbaceous wet- 
lands. However, they also stated that HH polarization should 
prove better than vv polarization and that C-band imagery 
should be preferred for detection of such wetlands. The obser- 
vations of this study indicate that C-band HH polarized SAR 
imagery cannot detect herbaceous wetland at high accuracy 
levels in the conditions and season extant at the time of image 
acquisition. However, the ~ : T M ~ ~ ~ ~ ~ ~ ~  + F2N did improve Estua- 
rine Emergent detection by greater than 10 percent (68.1 per- 
cent for ~ : T M ~ c ~ ~ ~ ~ ~  + F2Nvs. 57.9 percent for TM). 

Comparison of the combined accuracy figures for each 
land-cover category generated by classification of the TM data 
alone and those obtained with the best TMISAR merge technique 
for that category indicates that merging TM and SAR data does 
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increase detection accuracy (albeit sometimes modestly) for all 
land-cover types but one-Palustrine Emergent wetland (Table 
6). However, the preferred technique is land-cover type depen- 
dent. Presently, the reasons for this diversity in land-cover 
categorylimage merge combination improvement poses a 
conundrum from the perspective of research of radar backscat- 
ter response and data synthesis outcomes. 

From an operational perspective, the variation in synthesis 
techniques suggests the use of a hierarchical classification (i.e., 
to employ a layered or stratified classifier in a series of steps 
usually proceeding from the general to more specific categories 
in a decision tree format) where one optical1SAR combination is 
selected as the primary data set for analysis. This procedure 
would be used, for example, when differences among image 
merge techniques were minor. Following the classification of 
the primary data set, other data set combinations would be cre- 
ated to mask out and improve the accuracy of a particular cate- 
gory (e.g., Estuarine Emergent Wetland). The masks might also 
include other ancillary data (e.g.. elevation data) to further 
enhance classification accuracy. 

Summary 
Four TMISAR combination techniques were examined to deter- 
mine their contribution in digitally classifying complex land 
cover mixtures in an urbanizing coastal environment. Among 
the findings were 

Concatenation of the sAR data to the TM data provided the high- 
est overall accuracy of the 28 combinations tested. 
Image Addition and Image Weighting techniques might prove 
useful in other areas but were not effective in this instance. 
Image Fusion by principal component analysis was superior to 
other methods only in its ability to identify Estuarine Emer- 
gent Wetlands. 
Concatenation of SAR data with principal components of the 
TM data produced the highest accuracy for three land-cover 
types (Coniferous Forest, Impervious Surfaces, and Palustrine 
Scrub Shrub Wetland). 
Concatenation of a principal component of SAR data with TM 
data resulted in the highest accuracy for Developed, Deciduous 
Forest land cover, and Water. 
Merging TM with SAR data improved land-cover detection accu- 
racy over that attained by TM data alone in all cases but one 
(Palustrine Emergent Wetland). 
Spatial resolution of SAR data appeared to be equal to if not 
more important than incident angle or polarization in achieving 
higher overall detection accuracy and for detection of cultural 
land-cover types. The results for natural cover types were 
mixed. 

a The TM/FZN Radarsat Concatenation (C:FZN) produced the high- 
est overall accuracy. 

a For six of the eleven land-cover categories, the F2N image was 
the preferred SAR image in a merge technique and was a compo- 
nent in two others-but the specific merge technique varied. 

a Concatenations of sz Radarsat images generated the highest 
accuracy for the Bare Ground and GrasslCultivated categories 
but one was an ascending pass and one was a descending pass. 
It is not known if this outcome is related to row direction and1 
or vegetation canopy cover or to simple serendipity, but the 
outcome is intriguing. 
The overall accuracy difference among all SARITM Image Concat- 
enations varied by no more than 4.5 percent. 

a Substitution of the SAR data for various TM principal compo- 
nents and limiting the total number of principal components 
in the fusion data sets showed little benefit. The greatest differ- 
ence in overall accuracy was only 1.4 percent among the three 
variations tested. 

a The overall accuracy of the ERS/TM Concatenation (c:ERS) per- 
formed slightly better than its Radarsat sl Concatenation (c:Sl) 
counterpart (as well as all other Radarsat Standard Mode Concat- 
enations) largely due to ability to detect Coniferous Forest and 
two forest-related categories: Palustrine Forest and Palustrine 
Scrub Shrub. However, Radarsat Fine Mode Concatenations all 
performed better than the ERS data set. 

None of the C-band HH- and vv-polarized SAR/TM merged data 
sets could detect herbaceous or wooded wetlands at high com- 
bined accuracy levels [CA greater than 72.25 percent) in the 
environmental and seasonal conditions and at the categorical 
detail used in this study. Combined accuracies ranged from 7.0 
percent to 68.1 percent. 

a Simple Concatenation of the data sets proved as effective as 
any of the more robust image merge techniques. This was true 
for overall accuracy and each land-cover type except for Estua- 
rine Emergent wetland detection. 

This study used SAR imagery obtained during the spring 
(April-June) season. Wang et al. (1998) examined multi-date 
ERS-1 imagery of southern Ontario wetlands. They found that 
only multi-season data sets produced acceptable accuracies but 
that the best single date set was March. Baghdadi et al. (2001) 
classified six land-cover types in Ontario with multi-polarized 
C-band airborne SAR obtained on three dates. While cross- 
polarized data provided the best results, HH data was superior 
to t h e w  data. Morever, October was found to be the best time. 
Seasonal changes in land cover and wetlands of southern Hud- 
son Bay, Ontario were also analyzed by Murphy et al. (2001) 
using Radarsat images. In this case, the best classification 
proved to be with May data, independent of incident angle. 

The above studies, although focusing solely on SAR data of 
rural areas, are indicative of the mixed nature of SAR land- 
cover mapping results reported in the literature to date. The 
continuation of this mixed pattern is apparent in the variation 
in the urbanlcoastal SARITM findings reported here. Some find- 
ings agree with earlier work; others trend to be different. In this 
study, concatenation appears to be the most successful method 
of combining data sets of urban coastal environments. However, 
the results produced here should be tested in multiple environ- 
ments (coastal, urban, and rural) and with imagery acquired at 
various seasons of the year. The potential of s ~ ~ l o p t i c a l  data set 
combinations for incorporation into hierarchical or layered classifica- 
tions also merits consideration. 
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