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Abstract 
Commercial small-footprint lidar remote sensing has become 
an established tool for the creation of digital terrain models 
[DTMS). Unfortunately, even after the application of lidar 
vegetation point removal algorithms, vertical DTM error is not 
uniform and varies according to land cover. This paper 
presents the results of the application of an adaptive lidar 
vegetation removal process to a raw lidar dataset of a small 
area in North Carolina. This process utilized an existing lidar 
vegetation point removal algorithm in which the pammeters 
were adoptively adjusted based on a vegetation map. The 
vegetation map was derived through the exclusive use of the 
lidar dataset, making the process independent of ancillary data. 
The vertical error and suqace form of the resulting DTM were 
then compared to DTMs created using traditional techniques. 
The results indicate that the adaptive method produces a 
superior DTM. 

Introduction 
Digital terrain models [DTMS) are used to model landscape ele- 
vation, slope, and aspect characteristics for hydrologic, envi- 
ronmental, and urbanlsuburban applications. Methods for 
creating DTMS include (1) in situ measurement using surveying 
instruments (including the Global Positioning System), (2) pho- 
togrammetric techniques based on stereoscopic aerial photog- 
raphy, (3) interferometric synthetic aperture radar (IFSAR), and 
(4) active light detection and ranging (lidar) technology (Jen- 
sen, 2000). Each method has strengths and weaknesses and pro- 
duces DTMs of varying accuracy. Recently, there has been 
confusion in the DTM marketplace regarding which method is 
superior. As a response to this, there has been a significant 
amount of research conducted to determine the best methods 
for creating accurate bald-earth surface DTMs using lidar tech- 
nology (e.g., Plaut et al., 1999; Hodgson et al., 2002). This 
research describes adaptive digital image post-processing 
techniques that can be used to create more accurate DTMs using 
lidar-derived vegetation canopy information. 

Multiple-Return Udar Characteristics 
The majority of current lidar instruments receive multiple 
returns from a single transmitted laser pulse. This is com- 
monly referred to as "multiple-return" lidar. The interaction of 
the laser pulse with the Earth's surface may be relatively simple 
or complex. In the simplest case, a pulse of laser energy inter- 
acts directly with bare soil, asphalt, andlor concrete, and most 
of it is scattered back toward the receiver. This results in a sin- 
gle return. Similarly, depending upon the wavelength of the 
laser, a single laser pulse may be scattered directly from the top 

of a very dense vegetation canopy, also resulting in a single 
return (although this is less likely). The situation becomes more 
complex when apulse of laser energy passes through the top of 
the canopy and interacts with (1) the tree canopy trunk, 
branches, stems, and leaves; (2) understory trunk, branches, 
stems, and leaves; and, finally, (3) the terrain surface. This 
series of events may result in several returns being recorded for 
a single pulse of transmitted energy. Current commercial lidar 
instruments generate, at this writing, 5,000 to 50,000 pulses 
per second, each of which may produce several returns. A 
detailed discussion of lidar technology, capabilities, and appli- 
cation is available in Maune (2001). 

Improving the Accuracy of Lidar-Derived DTMs 
It is necessary to identify and segregate lidar returns that hit the 
terrain surface from non-terrain surface returns (e.g., within 
the vegetation canopy) in order to create accurate lidar-derived 
DTMs. To this end. research has been conducted to assess the 
accuracy and the potential sources of error in DTMS. For exam- 
ple, Huising et al. (1998) examined the impact of instrument 
and calibration error on lidar-derived DTMs. Cowen et al. (2000) 
evaluated the effect of percent canopy closure on lidar-derived 
DTMs. Hodgson et al. (2003) found that land-cover types were a 
significant factor when extracting elevation information from 
leaf-on lidar data in North Carolina. 

Setting aside instrument error (i.e., assuming all recorded 
lidar observation points are in their precise planirnetric loca- 
tion), there are theoretically two major explanations for the 
introduction of lidar-produced DTM error: (1) interpolation 
error, and (2) error that results from the incorporation of non- 
terrain points in the creation of the DTM. Interpolation error has 
two major sources. The first source of interpolation error is 
semi-systematic because it is related to the post spacing or dis- 
tance between lidar returns (e.g., 3 meters between lidar return 
postings). Post spacing is the result of a number of collection 
parameters, including (1) flying height of the aircraft above 
ground level [AGL), (2) speed of the aircraft, (3) the pulse rate, 
and (4) the scan angle. 

The second source of interpolation enor is a result of the 
lidar vegetation point removal process. Many common lidar 
vegetation point removal algorithms use a statistical surface 
trend to remove lidar-derived elevation points that appear to 
be the result of interaction with vegetation cover rather than the 
desired bald earth [Tao and Hu, 2001; Kraus and Pfeifer, 1998). 
The removal of lidar vegetation points means that fewer points 
are available for interpolation in certain areas (i.e., data voids 
exist). In addition, if true bald-earth lidar points are mistakenly 
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removed because they are confused with non-ground points, 
additional interpolation error may be introduced. Both condi- 
tions most often cause under-prediction of terrain elevation 
because high slopes are smoothed and small peaks are removed 
(Figure 1). This type of error often appears in patterns (not ran- 
dom) because it is the result of smoothing a slope, or clipping a 
peak. When non-ground lidar points are used in the interpola- 
tion process, processed terrain elevation will be overestimated 
in the DTM (Figure 1). 

The goal in the DTM creation process is to have a lidar vege- 
tation point removal algorithm that results in the least overall 
DTM error. To date, little research has been conducted to 
account for the different types of vegetation encountered dur- 
ifig the lidar vegetation pointremoval process. This study com- 
pares vertical DTM accuracy in DTMs produced using tradi- 
tional lidar vegetation point removal techniques to a DTM cre- 
ated using a more sophisticated adaptive lidar vegetation point 
removal technique. The adaptive technique minimizes the 
overall error by applying different vegetation point removal 
parameters based on information the lidar data itself reveals 
about the vegetation type (land-cover class) present. 
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Lidar-Derived Vegetation lnformatlon 
A multiple-return lidar system records the three-dimensional 
location of large numbers of points beneath the aircraft. In veg- 
etated or built-up areas many of these points are not on the ter- 
rain surface. Previous research has suggested that some of this 

' information can be used to characterize vegetation for environ- 
mental and forestry applications. For example, a number of 
studies ur large-footprint Scanning Lidar Imager of Canopies 
and Echo wery (SLICER) data to measure vegetation charac- 
teristic~ 3 SLICER instrument only recorded five samples, or 
footp , for each scan. Because one footprint is 10 meters 
acrr llle swath width is approximately 50 meters (Lefsky, 
19' ,,. Means et al. (1999) correlated characteristics of the 

I 
Actual Elevation 

Figure 1. A model of the vertical error present in a lidar- 
derived DTM after the vegetation point removal process has 
been preformed. This model assumes no instrument error 
(i.e., assuming all recorded lidar observation points are in 
their precise planimetric location.) 

SLICER waveform with in situ canopy height measurements. 
Such large-footprint lidar data are not commercially available. 

Only a few studies have used conventional, small-foot- 
print lidar data to extract vegetation characteristics. Jensen et 
al. (1987) used first- and last-return lidar data to obtain bot- 
tomland hardwood wetland tree height information. Naesset 
(1996) used last-return lidar data to predict mean height within 
forest stands (rZ = 0.91). Means et al. (2000) achieved goodpre- 
dictions (r2 > 0.90) of height, volume, and basal area using 
lidar-derived indices created by using aggregate statistical val- 
ues derived from lidar points found within each cell of a 10- by 
10-m grid. Height was estimated using the 90th percentile of 
the range (max-min return) and the average maximum height of 
the first return. Volume and basal area were estimated based on 
the relative height positions of the vertical point distributions 
at various percentiles of those distributions. A number of stud- 
ies conducted as part of the European Union HIGH-SCAN project 
have also explored the link between lidar data and vegetation 
characteristics. Hyppa and Hyppa (1999) tested the ability of a 
number of remote sensing instruments, including SPOT, TM, 
and LDAR data, to predict forest stand attributes, including 
height and stem volume. They found that lidar data predicted 
these relationships better than did the other sensors. Hyppg 
and Inkinen (1999) demonstrated a technique that employs 
lidar data collected with a high measurement density (4 to 5 per 
m2) to predict attributes for individual tree crowns. 

Results from these studies suggest that useful vegetation 
information can be extracted from multiple-return, small-foot- 
print lidar data. This paper evaluates a unique method that was 
developed to identify vegetation characteristics based on 
information derived exclusively from multiple-return lidar 
data. The resulting vegetation classification information 
derived from the lidar data were then input to an adaptive lidar 
vegetation point removal algorithm to determine if it increased 
the accuracy of the resultant bald-earth DTM. 

Study Area 
Hurricane Floyd made landfall in North Carolina on 16 Sep- 
tember 1999. The storm remained over North Carolina for sev- 
eral days, causing an estimated $3.5 billion in damage, mostly 
from flooding. This catastrophic event revealed that current 
flood plain maps need to be updated. Consequently, North Car- 
olina agencies decided to re-map the entire state using lidar to 
obtain an accurate bald-earth DTM. The statewide DTM will be 
used to predict areas at risk during any future flood event. The 
lidar research in this paper was initiated as a partnership 
between the NASA Affiliated Research Center at the University 
of South Carolina, the North Carolina Geodetic Survey, and 
EarthData, International of North Carolina, LLC., one of the 
contactors for the North Carolina mapping project. 

The 3.25- by 3.5-km study area was in eastern North Caro- 
lina approximately 42 km northwest of Rocky Mount and 70 
krn northeast of Raleigh (Figure 2). The area was in the coastal 
plain and consisted primarily of agriculture and forest with 
very few buildings (less than ten farmhouses and related struc- 
tures). Agriculture consisted of tobacco, soybean, corn, cotton, 
and alfalfa. Forest cover consisted of deciduous, coniferous, 
and mixed stands. Many of the coniferous stands were planta- 
tion pine at various levels of maturity. Elevation in the study 
area ranged from 50 to 80 m above sea level. For the most part, 
the terrain was gently rolling with little dramatic variation. Red 
Bud Creek and Swift Creek converge near the center of the 
study area. Small valleys created by these two creeks add the 
important elements of terrain variation and dense riparian veg- 
etation to the study area. 

Methodology 
This study investigated several of the basic theoretical prob- 
lems associated with the traditional approach to removing 
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Figure 2. The location of the study site is shown as a square on this 
map of the counties of North Carolina. 

lidar returns in vegetated canopies. These problems include (1) 
traditional methods usually require a large amount of costly 
human supervision and manual editing, (2) they are typically 
inconsistent in the application of parameters especially in 
large projects, and (3) the lidar vegetation point removal algo- 
rithms usually treat the entire dataset equally, i.e., they are not 
"adaptive" to local, site-specific conditions. It was hoped that 
these problems would be minimized by the use of an adaptive 
lidar vegetation point removal algorithm that incorporates veg- 
etation type information. Three hypotheses were tested inrela- 
tion to the following objectives: 

Information contained in the vertical distribution of lidar points 
can be used to classify vegetation cover type, 
Digital terrain model elevation accuracy can be improved 
through an adaptive application of a lidar vegetation point 
removal algorithm that incorporates lidar-derived vegetation 
type information, and 
Digital terrain model surface form (slope) can be improved 
through an adaptive application of a lidar vegetation point 
removal algorithm that incorporates lidar-derived vegetation 
type information. 

These hypotheses, stated above in alternative form, were 
tested in two separate phases. The first phase involved the 
extraction of vegetation type information using only lidar data. 
The second phase compared DTM results from 

(a) the application of a traditional, automatic lidar vegetation 
point removal algorithm consisting of a single set of algorithm 
parameters determined by a human operator, 

(b) a human-edited version of the results from (a) above, 
(c] an optimized version of the automatic lidar vegetation point 

removal algorithm in (a] consisting of a single set of algorithm 
parameters determined through an automatic optimization 
process, and 

(dl an adaptive lidar vegetation point removal algorithm where 
different algorithm parameters were developed for each land- 
cover class. Land-cover classes derived from the lidar data; 
each set of parameters determined through the automatic opti- 
mization process in (c) above. 

Udar Data Collection 
The lidar data were collected by EarthData, using the AeroScan 
lidar instrument on 12 June 2000, during leaf-on conditions. 
The instrument was flown at 5,000 ft (1524 m) AGL to obtain a 3- 
meter post spacing, i.e., the lidar points were on average 3 
meters apart. The instrument transmitted 15,000 pulses per 
second and collected up to five returns from each pulse. The 
lidar data were processed by EarthData and delivered as x,yz 
ASCII files. A total of three lidar datasets were provided by 
EarthData, including: 

a Raw Returns: Lidar-derived elevation postings processed to 
remove known instrument error. 

Automatic: Lidar-derived elevation postings after the applica- 
tion of a traditional vegetation removal algorithm. 
Automatic with Human Edifing: Automatically processed data 
subjected to human manual editing. This is the product Earth- 
Data normally delivers to a customer that has requested a bald- 
earth DTM. 

The raw return lidar data were merged from three different 
flight lines into a single dataset that was clipped to the study 
area boundary, Obvious "blunder" elevation postings that were 
vertically well above the main point cloud were discarded 
automatically based on a threshold value. These postings were 
most likely the result of some airborne object (e.g., a bird). The 
lidar data were then converted to ESRI point Shapefiles. 

Reference Data 
Three different sets of reference data were collected to test the 
hypotheses: (1) high spatial resolution color-infrared aerial 
photography, (2) ground-surveyed elevation data, and (3) in 
situ vegetated land-cover class observations. Stereoscopic 
1:20,000-scale color-infrared aerial photography was collected 
on 15 September 2000 (Figure 3). The photography was digi- 
tized and orthorectified to 0.5- by 0.5-m pixels, and was used in 
the reference, training, and error assessment phases of the proj- 
ect. The land cover in the study area was exceptionally stable 
over the two-month period between the collection of the lidar 
data and the aerial photography. 

Approximately 650 surveyed ground elevation points 
were collected by personnel of the North Carolina Geodetic 
Survey (NCGS) and National Aeronautics and Space Adminis- 
tration [NASA) using survey grade GPS units with an accuracy 
of s 1 cm in the horizontal (X, Y) and vertical (2). The points 
were obtained at approximately 5- to 6-m intervals along six 
transects which ran across stream channels to capture informa- 
tion on terrain variation. The vegetation land cover was meas- 
ured in situ at approximately 500 observations along the six 
transects. This information was used to assess the accuracy of 
the land-cover classification map derived strictly from the lidar 
data, and to calibrate the lidar vegetation point removal 
algorithms. 

VegeWbn ~ l f k a t h n  Using Only Udar Data 
One goal of this research was to derive vegetation type informa- 
tion using only lidar data. If successful, land-cover informa- 
tion could be used adaptively in a lidar vegetation point 
removal algorithm to produce more accurate DTMS. The land- 
cover classification system used to characterize the land cover 
in the study area is summarized in Table 1. 

The methodology to extract vegetation class information 
from lidar data was initiated by first examining the vertical dis- 
tribution of the lidar elevation points. Multiple-return lidar 
data collected in forested environments is often characterized 

PHOTOGRAMMEINC ENGINEERING & REMOTE SENSING December 2002 1309 

- 



Figure 3. A black-and-white reproduction of a 1:20,000- 
scale color-infrared photograph of the study area. 

by point distributions throughout the top of the canopy, the 
mid-canopy and understory vegetation, and finally the terrain 
surface (Figure 4a). Rendering these points graphically yields a 
lidar "point cloud" pattern that can be used to appreciate the 
vertical structure of the ground cover (Figure 4b). Integrating 
the point cloud over a 15- by 15-m geographic area yielded a 
histogram that revealed the frequency of laser returns along the 
Z-axis (Figure 412). This histogram is similar to a waveform 
because it changes based on the vertical vegetation structure 
present within each 15- by 15-m geographic area. Blair and 
Hoften (1999) referred to a similar histogram as the vertical dis- 
tribution of intercepted surfaces (!IDIS). Interestingly, Blair and 
Hoften (1999) used only single-return lidar data. They applied 

TABLE 1. LANDCOVER CLASSES AND DESCRIPTIONS USED IN THE 
CLASSIFICATION PROCESS 

Class Description 

1310 December ZOO2 

Pine Natural growth forested areas dominated by pine 
species 
Plantation pine 

Deciduous Forested areas dominated by deciduous species 
Old growth and riparian areas 

Mixed Areas where neither pine or deciduous species 
seemed to dominate 
Often pine forests with young, dense deciduous 
growing in gaps 

Scrub Short trees or shrubs (<6 meters tall] 
Often very dense 

High Grass Non-forested areas with relatively high (1 to 2 meters 
max height) non-woody plants 
Recently cleared forested areas 
Uncultivated fields 

Low Grass Non-forested areas with relatively low (<l-meter 
max height) non-woody plants 
Cultivated areas with short crops 
Open fieldslrecently mowed 

a transformation to the VDIS that considered the intensity of the 
return to produce a "pseudo-waveform." Conversely, this study 
is different because the vertical histograms created for it were 
based on multiple-return lidar information. These histograms 
did not include lidar intensity information. 

Extracting vegetation land-cover type information using 
only lidar multiple-return data is based on the assumption that 
the vertical histogram changes with the distribution of the 
points, which in turn changes based on the type of vegetation 
cover. For example, the monoculture canopy, depicted in Fig- 
ure 4a, and the terrain surface are discernible as the two modes 
of the distribution in the vertical histogram (Figure 4c). When 
mixed canopies are encountered, however, the bi-modal histo- 
gram tends to be dampened when compared to monoculture 
forest stands (not shown). Very open canopies or fields will 
create a histogram with only one mode because most of the 
points occur at the terrain surface (not shown). 

To characterize these distributions over small areas, soft- 
ware was written to analyze and display statistics generated 
from the lidar data in a raster format. The software calculated 
aggregate statistics based on the vertical distribution of points 
within a specified kernel and stored the values in an output grid 
of specified cell size. For example, if a kernel of 15 by 15 m and 
an output grid cell size of 3 by 3 m was chosen, a moving win- 
dow would create a 3- by 3-m grid of the study area in which 
each of the output cells would carry the values of various statis- 
tics of the vertical distribution of points (relative Z-values) for 
a 15- by 15-m box surrounding the center of each 3- by 3-m cell. 
Because the lidar post spacing for the project dataset was 3 m, 
a 15- by 15-m kernel size was chosen because this size would 
provide for a minimum of 25 points falling within the kernel 
area. Initially, only four distribution descriptors were calcu- 
lated, thus creating a four-band image. These descriptors were 
the mean, standard deviation, range, and skewness. This image 
was classified but yielded only moderately accurate results. 

To improve upon the lidar-based vegetation classification 
methodology, the program was modified to create the entire 
vertical histogram. This modification produced a 20-band 
image wherein each band represented a histogram bin. In other 
words, the set of bands for each cell of the image was a histo- 
gram, similar to the one in Figure 4c, which characterized the 
distribution of the vegetation in the 15- by 15-m kernel that was 
defined by that particular cell. Each histogram bin was 2 meters 
wide. No vegetation existed at greater than 40 meters above the 
minimum Z-value contained in any particular kernel; therefore, 
there were 20 bands. The initial result of this process was inter- 
esting and visually revealed different land-cover types. How- 
ever, there were two problems with this statistical image 
stemming from the fact that it had 20 different bands. The high 
number of bands required a high amount of training data. The 
standard for training pixels is to have no fewer than 10 times 
the amount of bands for each class. Another problem was that 
the histogram was noisy. Due to the narrow bin sizes, there 
were very few returns in many classes, so that by chance two 
nearly identical vegetation type distributions could appear 
quite different, especially i f  the number of observations was 
low. 

In order to reduce the noise and number of bands, a sample 
of ten points contained in each kernel was selected. One point 
was sampled at each 10th percentile of height from the mini- 
mum value. The Z-value of each of these points above the mini- 
mum point (relative Z-value) became the value for ten bands 
contained within the new image. The mathematical explana- 
tion of the process is based on the following equation: 

where is the value of the statistical image at row i, column j, 
and band k; Xi and Yi represent the real world coordinates at 
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Hypothetical Land Cover Actual LIDAR Point Cloud Corresponding Vertical Histogram 
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Figure 4. A terrestrial view of a hypothetical land cover scene (a), along with an actual lidar point cloud (b), and the 
corresponding vertical histogram of intercepted surfaces (c) that was created from the point cloud. 

the center of the pixel represented by i and j; Zrepresents the 
set of the relative height values for the lidar points within a 15- 
by 15-m square surrounding the point represented by Xi and q; 
andP is the mathematical notation for a percentile. 

This technique yielded a ten-band statistical image. Of the 
possible ten bands, Plate l a  displays three in a color composite 
image. The red image plane contains the values of the relative 
2-values of the point in which all of the other points in the ker- 
nel for that grid cell were below it (i.e., the maximum point). 
The green plane contains the relative Z-values of the point in 
which 40 percent of the points were below it. Finally, the blue 
plane contains the relative elevation value of the point in 
which 10 percent of the points were below it. 

Shades of gray, including white and black, are present in 
areas where all the values were approximately equal to one 
another (i.e., all the points were near maximum points). Dense 
canopy prevented much lidar penetration, so nearly all of the 
points resided near the top of the distribution. This meant that 
the very bright-white areas represent the talIest canopy with 
the densest vegetation. An examination of the color-infrared 
imagery revealed that these areas usually contained bottom- 
land-hardwood found in the riparian stream channels. The 
darker gray shades indicate shorter regions of very dense can- 
opy. Finally, the very dark areas contain no trees. Like gray 
shades, blue hues represent areas where most of the points 
were near the maximum 2-value. These areas consist of shorter 
stands with even denser canopy Yellowish-green hues repre- 
sent areas with relatively high or balanced central region of the 
vertical histogram distribution. These areas consist of partially 
open canopy. Pure green areas contain shorter pine, particu- 
larly plantation pine, while red areas are indicative of open 
canopies typical of tall pine, or transitional areas between 
deciduous stands and open fields. Figure 5 depicts the curves 
associated with four land-cover types found at four specific 
pixel locations in the study area. In effect, these curves repre- 
sent a lidar-based signature for these land-cover classes. 

This ten-band image was classified using a supervised 
minimum-distance classification algorithm (Jensen, 1996). 
The classification was performed by selecting approximately 
500 pixels for each class as training sites using the colorinfra- 
red aerial photography. These training sites were verified 
through in situ land-cover observation as previously dis- 
cussed. The resulting classification map is shown in Plate lb. 

Assessment of Elevation Emn by Vegetation Class 
The mean absolute vertical error was calculated for each of the 
lidar-derived vegetation classes using a DTM generated from 
the automatic dataset. An ANOVA was used to test for significant 
differences in this statistic. This test was conducted to validate 
the theory behind the creation of an adaptive vegetation 
removal algorithm. It was thought that if  lidar-derived eleva- 
tion error varied with vegetation type, it might be possible to 
minimize the error in a particular class. Reducing the error in 
anv class would cause the overall elevation error to be reduced. 

Mean absolute vertical error by l a d  cover is shown in 
Table 2. The one-way ANOVA test revealed that there was a sig- 
nificant difference in the accuracy of the lidar-derived eleva- 
tion information by lidar-derived land-cover class. Note that 
the errors in the open low- and high-grass areas are at or near 
the optimum error level and close to zero. The other vegetated 
areas could benefit from further algorithm refinement. For 
example, while the low-grass error may be near its optimum 
level, a more aggressive set of parameters for the lidar vegeta- 
tion point removal algorithm could help minimize the eleva- 
tion error in forested areas. 

Algorithm Callbration (Optimization) 
The process used to create the "automatic" lidar dataset is not 
without human intervention. It requires a human operator to 
determine the input parameters for the lidar vegetation point 
removal algorithm. The operator's decisions on what parame- 
ters to use are based on the theoretical error model discussed 
previously (Figure I), and his or her own past experience. 
Using overly aggressive parameters can result in the semi-sys- 
tematic interpolation error that is the result of shaving off small 
peaks and smoothing steep slopes. Parameters that are not as 
aggressive can result in over-prediction because non-ground 
points are left in the D m .  Often the operator decides to err in 
the latter direction, because during the manual editing process 
it is easier to see and remove unwanted points, than to detect 
the absence of valid points and reinstate them. 

Creation of a truly comparable adaptive surface, in which 
the operator arbitrarily chooses algorithm parameters based on 
past experience, would be impossible, as well as undesirable. To 
overcome this problem, and create two comparable surfaces, it 
was decided to calibrate both the automatic and adaptive lidar 
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(a) (b) 

Plate 1. (a) A color composite created by displaying three of the ten bands of the lidar-derived 
statistical image described in the text. (b) A vegetation map produced by classifying the lidar- 
derived statistical image. 
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Mixed 

Scrub 

0 High Grass 
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vegetation point removal techniques by using the reference ele- each could create. The optimization methodology systematically 
vation points, thus effectively optimizing these methods. This generated algorithm parameters, created a surface, and then 
allowed both methods to be compared based on the best surface tested the error for that surface [Figure 6). The process sirnultane- 

ously derived (1) algorithm parameters for each land cover 
(based on the lidar-derived land-cover map), and (2) the entire 
set of elevation points. When this process was completed, two 
optimized surfaces existed. The adaptive optimized automatic 
surface was created by considering land cover in the optimiza- 
tion process. Conversely, the optimized automatic considered 
all the elevation points together (i.e., it ignored vegetation class). 

Percentile (Band) 

Figure 5. Lidar-derived signatures for selected pixels of 
known land cover contained in the statistical image shown 
in Plate l a .  
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TABLE 2. THE MEAN ABSOLUTE ERRORS ASSOCIATED WITH EACH LIDAR-DERIVED 
VEGETATION CLASS IN THE DTM CREATED USING THE AUTOMATIC DATASET 

Land # of Reference Mean Absolute Vertical 
Cover Points Error (m) 

Low Grass 100 0.10 
High Grass 73 0.27 
Scrub 63 1.51 
Pine 134 0.46 
Deciduous 144 2.43 
Mixed 134 2.42 
Total 648 1.33 
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Figure 6. A flow diagram documenting the calibration proc- 
ess used to create optimized DTM surfaces Tor comparison. 
The process was implemented using a Visual Basic program 
that took advantage of Arc/lnfo's Open Development Envi- 
ronment (ODE) and a number of Arc Macro Language ( M L )  
scripts. 

Surface Form Accuracy of Varlous Udar.DeM Dlgltel Elevation Modeb 
Surface form (slope and aspect) accuracy is often considered 
just as important as the vertical accuracy of DWS. For example, 
when modeling the overland flow of liquids, it is vitally 
important to have a correct model of the shape or form of the 
surface. Because all the reference data were collected in tran- 
sects, an overall assessment of surface form was not possible. 
However, it was possible to use the elevation information 
obtained along the transects. The slope was calculated 
between each in situ elevation point by converting the rise and 
run information between each point. This process was per- 
formed for each of the four lidar-derived test surfaces and com- 
pared with the slope derived from the in situ reference data. 
The absolute slope error was calculated by taking the absolute 
difference between the slope of the in situ reference informa- 
tion, and the slope of the surface derived using the lidar data. 
The mean of the absolute slope errors for each surface were 
then calculated and tested for significant differences from the 
adaptive surface using three t-tests. 

Results 

TABLE 3. ACCURACY ASSESSMENT FOR THE LIDAR-DERIVED CLASSIFICATION. A 
LARGE AMOUNT OF CONNSION EXISTS BETWEEN THE HIGH AND LOW 

CATEGORIES 

Reference Data 

Low High Scrub Pine Mixed Dec Total Users 

UdarDerived Vegetation ClassHicaUon Map 
The lidar-based vegetation classification map was smoothed 
using a 5- by 5-pixel majority filter to reduce noise. This was 
performed because the field surveys in which the reference 
data were collected did not account for isolated or small 
changes in land cover. The overall accuracy of the map was 72 
percent with a Kappa Coefficient of Agreement of 0.65 (Table 3). 
One factor that may contribute to the confusion between classes 
is terrain variability. For example, if a steep elevation change 
occurs entireIy within the kernel size (15 by 15 m), the s ip*  
ture from the vertical distribution of points may lookmore like 
a heavily vegetated area when in reality it is an open field or is 
void of vegetation entirely. A striking problem with this classi- 
fication was the confusion between high grass and low grass. 
Basically, it was not possible to discriminate between low- and 
high-grass cover using the lidar data. However, when these 
classes were combined into a single "Open" class, the overall 
accuracy increased to 84 percent and the Kappa Coefficient of 
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LOW 51 
High 7 70 1 
Scrub 14 
Pine 2 2 5 55 3 6 
Mixed 2 9 96 20 
Dec 36 94 
Total 60 128 21 64 135 121 
Producers 85% 55% 67% 86% 71% 78% 

Overall Accuracy = 72%-K-Hat = 0.65061 
The overall accuracy was 84% and the K-Hat = 0.780 
when high and low grass classes were combined. 

Agreement to 0.780. Based on these results, it was possible to 
reject hypothesis #1 and state that information contained in the 
vertical distribution of lidar points can be used to classify vege- 
tation cover type. 

Vectlcrl Accuracy of DTMs Created Using Udar Data 
The differences in mean absolute vertical error and root-mean- 
squared error (RMSE) for the four DTMs created using the four 
alternative methods are displayed in Figure 7. Each of the t-tests 
were significant at the 0.01 level. Based on the significance of the 
t-tests, it was possible to reject hypothesis #2 and state that DTM 
vertical accuracy can be improved through an adaptive applica- 
tion of a lidar vegetation point removal algorithm that incorpo- 
rates lidar-derived vegetation type information, The adaptive 
technique creates a superior DTM when compared to DTMs cre- 
ated in whichvegetation is not accounted for in the application 
of the vegetation removal algorithm. As an additional note of clar- 
ification, the automatic dataset does not represent a commercial 
lidar product that would be delivered to a DTM user. Although the 

Error Comparison by Vegetation Removal Method 
2.48 

1 I ~ e a n  ~bsolute Vertical Error l RMSE 1 

Automatic Automatic Optimized Adaptive 
with Human Edits Automabc Optimized 

Automatic 

Figure 7. A comparison of the error found in each of the 
lidarderived DTMS. The mean absolute error of the DTM pro- 
duced using the adaptive optimized method was significantly 
smaller then all of the other techniques at the 0.01 level. 
These results indicate that an adaptive approach to vegeta- 
tion point removal is of value. 

December ZOO2 1313 



automatic with human edits surface was processed identically 
to a consumer product, the lidar data for this project was acquired 
leaf-on. It has been shown that lidar-derived DM are less accu- 
rate when collected during leaf-on vs. leaf-off conditions (Raber 
et al., 2002). This effect is a Likely a contributor to the reason the 
DTM errors reported in Figure 7 are not consistent with commer- 
cial lidar accuracy claims. 

Surface Form (Slope) A w a c y  of UdwQerived DTMs 
The slope error descriptive statistics associated with each 
method are summarized in Table 4. The DTM derived using the 
optimized adaptive method was significantly better then each 
of the DTMs created using alternative methods at the 0.05 level, 
except for the optimized automatic method which was not sig- 
nificantly different. Based on these results, it was possible to 
reject Hypothesis #3 and state that DTM surface form (slope) can 
be improved through an adaptive application of a lidar vegeta- 
tion point removal algorithm that incorporates lidar-derived 
vegetation type information. However, the optimized auto- 
matic methodology and the optimized adaptive methodology 
produced surface form results that were for all practical pur- 
poses nearly identical. 

Summary 
Potential applications for vegetation classification based solely 
on lidar data are exciting. Refinement of the methodology dis- 
cussed in this paper could result in the fully automated cre- 
ation of a virtual reality visualization of an area that included 
elements of terrain and land cover based entirely on lidar data 
without the aid of aerial photography or other remote sensor 
data. Land-cover maps could be created at the same time lidar 
missions are flown, thus creating a new tool for land planners 
and foresters. 

A DTM produced using an adaptive lidar vegetation point 
removal algorithm was more accurate than one produced using 
techniques that did not consider vegetation cover (Figure 7). 
The differences in D m  elevation error between the optimized 
adaptive and the optimized automatic algorithms (approxi- 
mately 3 cm), as well as the differences between the optimized 
adaptive and the automatic with manual edits (approximately 
13 cm), were not that large. However, these differences were sta- 
tistically significant. 

The method discussed in this paper classifies the lidar 
point distribution into land-cover classes and then uses eleva- 
tion reference data to calibrate vegetation removal algorithm 
parameters for each land-cover class. Calibration requires min- 
imal ground survey. However, there is potential for the develop- 
ment of a predictive relationship between the vertical distribu- 
tion of lidar points and the algorithm parameters needed for a 
given area. Another topic for fnture research is the testing of 
this methodology using other lidar sensors, and under various 
physiographic and temporal conditions. It is important to note 
that the adaptive method requires no manual editing and little 
extra computer computation. Also, when humans edit lidar 
data to create and then refine a DTM, they (1) calibrate the algo- 
rithm parameters to their own past experiences, and (2) manu- 
ally edit out points based on their own heuristic rules of thumb. 

TABLE 4. SLOPE ERROR TABLE 

Absolute Absolute Significance 
Maximum Mean (Different 

Slope Slope from 
DSM Error Error Adaptive) 

Automatic 5 3" 6.7' 0.0001 
Automatic with Manual Edits 12" 1.6' 0.022 
Optimized Automatic 12" 1.4' 0.994* 
Optimized Adaptive 1 1.4' N A 

Conversely, when a DTM is produced using the adaptive algo- 
rithm applied to lidar data, it is possible to document explicitly 
the rules that were used to create the D m .  
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