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Abstract 
The Iterative Self-organizing Data Analysis Technique 
(ISODATA) has been widely used in unsupervised and super- 
vised classification. However, ISODATA suffers from several 
limitations. The user often spends much analyst time on 
specifying input parameters by trial and error, particularly 
initial cluster centers. Of more importance, an inappropriate 
choice of initial clusters may cause poor classification results. 
ISODATA is computationally intensive because of its itemtive 
process. This study aimed to develop a synergistic automatic 
clustering technique (SYNERACT) that combined the hierarch- 
ical descending and ISODATA clustering procedures to avoid 
those limitations. The two methods were compared using 
multispectml digitized video images. An inappropriate choice 
of initial seeds for ISODATA was shown to reduce accuracies 
significantly In contrast, SYNERACT was capable of determining 
the suitable locations for the initial clusters automatically from 
the data, thereby avoiding those limitations. Owing to this 
capability, SYNERACT was not so heavily dependent on the 
itemtive process as was ISODATA, and thus was much faster 
than ISODATA. SYNERACT also matched ISODATA in accuracy, 
Accordingly, SYNERACT could serve as an alternative to ISODATA 
for multispectral image analysis. 

lntroductlon 
Clustering used for unsupervised classification is one of the 
most often used methods for extracting information from re- 
motely sensed data of the Earth (Jensen, 1996). Clustering can 
also be used to determine the natural spectral groupings pres- 
ent in a data set. Thus, some of the unique classes, but with very 
small areal extent that might not be initially apparent to the 
analyst applying a supervised classifier, can be recognized as 
distinct units (Campbell, 1987; Lillesand and Kiefer, 2000). 
These classes might otherwise be incorporated into other 
classes, generating error and imprecision throughout the entire 
classification. There are two main families of clustering meth- 
ods: Iterative Self-organizing Data Analysis Technique 
(ISODATA) clustering and hierarchical clustering approaches 
(Viovy, 2000). 

ISODATA (or K-means) is a widely used clustering method 
to partition the image data in the multispectral space into a 
number of spectral classes (Wharton and Turner, 1981; Jensen, 
1996). It requires that the user manually specify various pa- 
rameters to control the clustering process. These parameters are 
varied and the programs are run in an iterative fashion until the 
output set of clusters meets the analyst's criteria. The general 
principle of this method is to minimize an objective function 
(e.g., the sum-of-squared errors) by manipulating a set of cluster 
centers, whose number has to be specified by the analyst and 
whose initial locations are generated randomly (Viovy, 2000). 
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More details about the clustering algorithms for ISODATA can 
be obtained from Swain (19781, Richards (1993), and Jensen 
(19961. 

This type of clustering algorithm, however, suffers from 
two major limitations. The first limitation associated with 
ISODATA is the requirement of some a priori knowledge about 
the structure of the data under consideration, such as a priori 
knowledge regarding the range of optimal values for the cluster- 
ing parameters-i.e., splitting and merging thresholds (Ball 
and Hall, 1967). Hence, the user often spends much analyst 
time to determine the optimal values of these parameters by 
trial and error. Specifically, ISODATA requires that the user spec- 
ify the number of clusters, along with their initial positions, in 
advance (more details stated below). In practice, the actual or 
optimum number of clusters to choose will not be known. The 
strategy is to guess high and to consolidate any redundant clus- 
ters after the iterative part of the algorithm terminates, or at 
intervening iterations (Swain, 1978). 

ISODATA requires the user to specify the initial locations of 
the cluster centers (also called "seeds" or "cluster means") 
through an educated guess simultaneously. Clustering begins 
with a set of arbitrarily selected pixels as cluster centers with 
the exception that no two may be identical (Swain, 1978). 
Although initial cluster centers are selected at random to assure 
that the analyst cannot influence the clustering, some ISODATA 
algorithms provide their own initial seeds (Campbell, 1987). 
Indeed, initial seeds are often chosen evenly spaced along a 
diagonal axis in multidimensional feature space because no 
guidance is available in general (Richards, 1993). This is a line 
from the origin to the point corresponding to the maximum digi- 
tal number in each spectral component (e.g., 255,255,255 for 
SPOT multispectral image data). Other similar procedures used 
in ISODATA have been proposed in Fromm and Northouse 
(1976), Jensen (1996), and ERDAS (1997). As pointed out by 
Richards (1993), the choice of the initial seeds is not crucial to 
classification accuracy, but it will affect the time it takes to 
reach an acceptable accuracy. It does not matter where the initial 
cluster centers are located, as long as enough number of itera- 
tions (or processing time) is allowed (ERDAS, 1997). However, 
few studies have investigated the important but apparently 
neglected problem about how the choice of the initial seeds may 
adversely affect final classification results when ISODATA is used. 

The second limitation is that ISODATA is computationally 
intensive when processing large data sets. Furthermore, 
ISODATA tends to suffer from performance degradation as the 
number of bands, the number of pixels, or the number of clus- 
ters increases (Richards, 1993; Viovy, 2000). This problem will 
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Row 

1: Cotton 4: Cantaloupe 
2: Soil 5: Pigweed 
3: Johnsongrass 6: Sorghum 

Figure 1. Plot identification map of the study area (not 
drawn to scale). 

become worse with new-generation instruments-imaging 
spectrometers (or hyperspectral scanners)-such as AWS 
(Airborne Visible Infrared Imaging Spectrometer) that pro- 
duce a very large number of simultaneous measurements in 
every image pixel. 

The second type of clustering method is hierarchical clus- 
tering. For the agglomerative hierarchical clustering (or hierar- 
chical ascending) algorithm (Ward, 1963; Wishart, 1969), the 
amount of storage required for this approach is proportional to 
the number of pixels squared. Therefore, this method is not 
suited for classification of large sets of remotely sensed data 
(Wharton and Turner, 1981). For the divisive hierarchical clus- 
tering (or hierarchical descending) algorithm, it has been 
developed such that the data are initialized as a single cluster 
that is progressively subdivided. The procedure is more com- 
putationally intensive and is rarely used in remote sensing 
applications, because usually a large number of pixels are 
involved (Richards, 1993). On the other hand, Viovy (2000) has 
shown that the hierarchical descending method developed in 
his study is very efficient and does not show significant perfor- 
mance degradation with increasing dimension or increasing 
number of pixels. 

This study attempted to accomplish two specific objec- 
tives using two-date video image data. The first objective was 
to show that the choice of initial clusters required by ISODATA 
significantly affected final classification results, which was TABLE 1. THE FILTERS, WAVEBANDS, AND CAMERA SETTINGS OF THE VIDEO 

IMAGING SYSTEM (RICHARDSON ETAL., 1985) 
contrary to the ideas suggested by Richards (1993) and ERDAS 
(1997). The second one was to develop a synergistic automatic Filter Wavelengths (nm) Aperture Band Number 
clustering technique (SYNERACT) based on the principles of Blue 420-430 f1.8 
hyperplane, iterative optimization clustering (i.e., ISODATA or Yellow-Green 

1, 5 
520-550 f2.8 3, 7 

K-means), and binary tree. SYNERACT required a minimum of ~ , d  640-570 f1.8 2, 6 
user input and had the ability to determine the suitable loca- Near Infrared 850-690 f8.0 4, 8 
tions for the initial clusters automatically from the data set 
itself. Because the approach did not heavily rely on the itera- 
tive process, it was relatively efficient when processing 
remotely sensed data with a large number of bands or pixels. Accuracy assessment was performed over 18 plots from 
SYNEKACT was thus well suited to be a surrogate for ISODATA for row 1 to row 3 in the experimental field with the exception of 
remote sensing applications, which was contrary to the ideas row 4, as shown in Figure 1. A digital ground truth mask was 
suggested by Richards (1993). used to calculate classification accuracies of the two clustering 

algorithms. Border areas of mask between plots were elimi- 
Study Area and Materials nated in order that incomplete pixels or mixed pixels were 
The study area was located near Weslaco in Hidalgo County, excluded from accuracy assessment. 
Texas. It was a completely randomized block-designed field 
experiment consisting of plots ofthe following surface features: Method and Rationale 
(1) cotton, (2) cantaloupe, (3) sorghum, (4) johnsongrass, (5) SYNERACT combines the concepts of hyperplane, binary tree, 
pigweed, and (6) bare soil (Figure 1). Each of the 24 plots (six and iterative optimization (K-means) clustering. The hyper- 
treatments and four replications) measured 7.11 mby 9.14 m, plane divides a cluster into two clusters of smaller size and 
making the total site dimension 42.67 m by 36.56 m [Richard- computes their means. The binary tree is a useful data struc- 
son et al., 1985). The fourth row (drawn with a dashed line) was ture that can store the clusters successively generated from 
excluded from the study due to damage to this portion of the each split. The first concept and the logic flow of SYNERACT are 
video data file. described in more detail as follows. The binary tree and related 

The two-date video image data were acquired on 31 May routines that build, traverse, and apply binary trees are de- 
and 24 July 1983 near noon on moderately sunny days from an scribed in Tenenbaum and Augenstein (1981). The third one 
altitude of 900 m. The video imaging system used to collect data can be obtained from Richards (1993). 
for the study is described in detail in Richardson et al. (1985). 
The filters and camera aperture settings used for this system are Definltlon of a Hyperplane 
shown in Table 1. Video images were digitized to a quantiza- To appreciate the development of SYNERACT, it is required to 
tion level of 256. Eight data matrices of 512 by 512 were created. understand the concept of hyperplane. The family of linear 
The two 4-band video images were spatially registered using discriminant functions (Nilsson, 1965) can be expressed in the 
CONTROL POINT and WARP modules of the International Imaging form as follows: 
System (12S) software package (Richardson et al., 1985). Spec- 
tral bands 1 to 4 were acquired on 24 July; these same spectral F(X)= W 1 * X l +  W 2 * X , +  ... + W n X X n +  Wn+,, (1) 
bands (5 to 8) were acquired on 31 May, The wavelengths and 
nominal spectral locations of these bands are also shown in where Wl, W,, ..., W,, W,,, are weighting coefficients. F is a lin- 
Table 1. Multiple-date image radiometric normalization using ear function of the components of an augmented column vec- 
regression (Jensen, 1996) was performed to correct the data set tor X. 
used in the study, because atmospheric effects likely affected A simple linear separation is performed by a linear dis- 
pixel brightness values of the two-date video image data (Eck- criminant function that partitions a feature space into two 
hardt et al., 1990). regions. The linear discriminant function can be viewed as a 
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separating surface in which the simplest form is a hyperplane 
(Nilsson, 1965). A hyperplane partitions a feature space into 
two regions defined as 

where W = [Wl, Wz, ..., W,, Wn+ll,XT = [Xl,Xz, ..., X,, 11, and 
n is the dimension of a feature space. 

Assume that there is a cluster in a feature space. A weight 
vector W is viewed to implement a linear separating surface 
(hyperplane) to divide a cluster in a feature space into two clus- 
ters of smaller size (children). The augmented pixel vectors of 
the one child-cluster have a positive dot product value with W, 
while the other child-cluster consists of pixels (lying on the 
other side of W) that have a zero or negative dot product value 
with W. The former is categorized as S, and the latter is catego- 
rized as S2. Centers of the two sets are computed from the pixels 
in the two sets, respectively, which will be used as initial seeds 
for the K-means procedure. The sets of parent cluster (S) and 
two child-clusters (S1 and S,) can be defined as 

Algorithm for Generating Hyperplane and InltM Clusters 
The process of determining a weight vector (i.e., a straight line) 
and two initial cluster centers is illustrated by a hypothetical 
case in a two-dimensional spectral space shown in Figure 2. In 
general, the spatial distribution of image pixels in a two-di- 
mensional spectral space can be thought of as a two-phase 
mosaic, in which patches containing high-density image pix- 
els alternate with gaps containing low-density or no image pix- 
els. At each node on every level of a binary tree, the process 
will find a line passing through the gap between two main 
patches and will compute two cluster (patch) means for the 
iubsequent use. 

An augmented pixel vector is defined as 

X = [VT, llT, where VT = [Vl, V2, . . ., V,], (3) 

Let the pixels be augmented and expressed by the general col- 
umn vector X. One pixel P is chosen from this cluster so that 
IP - CI > IX - CI for all X, where C is an arbitrarily chosen posi- 
tion vector in a feature space. Let C be the grand mean vector 
computed from all of the pixels in a single cluster. Under this 

Figure 2. A two-dimensional, hypothetical case with two 
clusters illustrating how a hyperplane is generated. 

condition, P and C define a line from the grand mean C to the 
farthest pixel P. Assume that there is a single cluster in a two- 
dimensional spectral space consisting of two spectrally distinct 
clusters of smaller size represented by U and V, respectively, so 
that (X} = (U) U {V}, P E {XI. Assume further that P comes 
from {U 1 and is denoted by U*, U* = P. The next step is to find 
allofVsothat(V - C)-(U* - C) SO, {V) C {Xl.FindVl* or 
V2*from{V}sothatV1*mustsatisfyJ(Vl* -C).(U* -c)J = O  
andV,* must satisfy J(V2* - C) . (U* - C)I < I(V - C) . (U* 
- CII. - 8 

Because the brightness value of each pixel in remotely 
sensed data is recorded as an integer, V,* cannot always be 
found in all cases. Thus V2*, having the biggest negative dot 
product value, is used as an alternative to V, *. Lines perpen- 
dicular to (U* - C) and passing through V1* or Vz* will be hyp- 
erplanes separating {U) and (V), as shown in Figure 2. The 
means of the two sets (S, and S2) are computed simultaneously 
and will be used as initial seeds for the subsequent K-means 
procedure. According to the concept of the single-sided deci- 
sion surface proposed by Lee and Richards (1984), these two 
hyper-planes are defined by equations shown as follows: 

W1 = [(U* - C)T, - V1* ' (U* - C)IT 

w, = [(U* - C)T, - Vz* . (U* - C)IT 

Test for Rekvance of Splitting 
SYNERACT will split each cluster formed at the previous separa- 
tion into two clusters of smaller size. The splitting process is 
theoretically continued until there is only one pixel in each 
cluster. Therefore, this process must be controlled by two in- 
put parameters, including the maximum number of clusters to 
be considered (G,) and the minimum percentage of pixels 
allowed in a single cluster (PO'). Each split is tested for these 
two parameters a posteriori in order that a homogeneous clus- 
ter will not be split inappropriately. Because each cluster is the 
basis for an information class, C,, will become the maximum 
number of classes to be formed. Some clusters with percentage 
of pixels less than PO/o can be eliminated, leaving fewer than 
C,, clusters. The pixels in these discarded clusters will be 
reassigned to their original parent cluster. 

This study will also attempt to use two splitting parameters 
proposed by Viovy (2000) for testing the relevance of a split. 
The first parameter is defined as the relative proportion com- 
puted from pixels assigned to parent cluster divided by pixels 
assigned to child-clusters based on the nearest-neighbor crite- 
rion. The second parameter is that the total variance of the two 
child-clusters should be smaller than the variance of the parent 
cluster; the ratio of variance is equal to the former divided by 
the latter. Thus, the split is relevant if both the proportion is less 
than a threshold (a) and the ratio of variance is less than a 
threshold (p) specified by the user. If one of the two tests 
described above fails, then the split is rejected. The parent 
cluster that is said to be stabilized is left out of the subsequent 
split. The thresholds of two splitting parameters were deter- 
mined from a set of experiments done on simulated data sets, 
which were obtained by randomly generated pixels. The 
threshold of the first parameter a = 20 percent and the second 
p = 0.95 were determined by Viovy (2000), but the user can 
specify them. 

The h l c  Ngorkhrn d SYNERACT 
The algorithm is shown in Figure 3 and proceeds in the follow- 
ing steps: 

(1) Specify the maximum number of clusters to be considered 
( C A  and the minimum percentage of pixels allowed in a 
single cluster (a). 
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(2) Initialize all of the image pixels as a single cluster and place 
it at the root of a binary tree. 

(3) Generate a hyperplane from the cluster, split the cluster into 
two smaller child-clusters, and compute their means that are 
used as initial seeds for the K-means procedure. 

(4) The K-means procedure is implemented and repeated until 
the means of two child-clusters remain unchanged between 
two successive iterations. 

(5) Check if the split is relevant; that is, that the number of clusters 
is less than C,, and that the percentage of pixels in a cluster 
is greater than P%. If so, then place two child-clusters at the 
left and right subtree nodes, move down to the left subtree 
node, and return to Step (3). Otherwise, reassign pixels in the 
two child-clusters to their parent cluster. 

(6) Check if any remaining tree nodes are available. If available, 
move back to the parental (or ancestral] node at upper levels, 

Specify the maximum number of 
clusters considered (C,) andthe 

minimum percentage of pixels 
allowed in a single cluster (P%) 

Initialize all pixels a a single cluster and 
place it at the mot of a binary tree 
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move down to the right subtree node, and return to Step (3). 
Otherwise, terminate the process. 

4 b 

An lllustratlon of SYNERACT 
A hypothetical case with three clusters is shown in Figure 4 to 
illustrate how SYNERACT works. As shown in Figure 4a, there are 
three clusters denoted by 1,2, and 3, respectively. These three 
clusters are initialized as a single cluster of bigger size, and this 
big cluster is placed at the root R of a binary tree, as shown in 
Figure 4b. Assume that a hyperplane W, is first generated from 
the cluster at the root R, and it is subdivided into two child- 
clusters of by W, (Figure 4a). One child-cluster (denoted by B) 
is composed of cluster 3, and the other child-cluster (denoted 
by A) is composed of clusters 1 and 2. The K-means procedure 

Generate a hyperplane fiom a cluster, 
split it into two subclusten, and 

compute their means 
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! 
Implement K-means (iterative 

optrmtzstron) clustering procedure 

Place two sub-clusters at left and 

subtree nodes Yes 
based on C, and PA 

No 

ReaPsign pixels in the two sub-clusters to 
their parent cluster 

- 

Move back to the parental node 
at upper levels and move down 

to the right subtree node 

Figure 3. The flowchart showing how SYNERACT is implemented. 
1 
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Figure 4. A Wo-dimensional, hypothetical case with three 
clusters illustrating how SYNERACT works. 

is then implemented and repeated until the means remain 
unchanged between two successive iterations. At this point, 
check if the split is relevant according to the criteria: C,, and 
Pi6 mentioned above. Because the split is relevant in the case, 
place these two child-clusters at the left and right subtree nodes 
A and B of the root R, move down to node A, and return to Step 
(3). A hyperplane W, is generated from cluster A, and cluster A 
is split into clusters 1 and 2. Again check the relevance of the 
split. Because the split is relevant, place them at the left and 
right subtree of the node A, move down to node 1, and return 
to Step (3). A hyperplane is generated from cluster 1, and the 
cluster is split into two sub-clusters. Because the split is irrele- 
vant, reassign them to cluster I. Check if remaining nodes are 
available. Because nodes 2 and 3 are available, move upward 
to node A, move down to its right subtree node-node 2-and 
return to Step (3). This process continues until cluster 3 is no 
longer split and no remaining nodes are available. 

Influences of Initial Seed Adgnmnt on Accuracy 
The influence of picking initial cluster centers beforehand on 
classification results apparently has been neglected in most 
earlier studies about ISODATA, as mentioned previously. This 
limitation was the major concern in this study. Table 2 presents 
the classification results of ISODATA using six sets of initial clus- 
ter centers randomly generated from the computer program 
written by the author. Overall accuracies varied from the lowest 
at 65 percent to the highest at 85 percent; a variation of 20 per- 
cent in the accuracy was obvious. Clearly, the choice of the ini- 
tial seeds was crucial to classification accuracies, because it 
evidently affected the results when ISODATA was used. This out- 
come was contrary to the ideas proposed by Richards (1993) 
and ERDAS (1997) mentioned previously. Indeed, a completely 
random assignment of initial seeds has been scarcely adopted 
in commercial software packages. 

Note that the accuracies of johnsongrass from set 2 to set 6 
were relatively low or even equal to zero; in contrast, the accu- 
racies of pigweed and sorghum were relatively high. Although 
johnsongrass, pigweed, and sorghum were spectrally similar 
land-cover types, the band combination of 2,3,4, and 8 in the 
two-date video image data had the ability to differentiate three 
vegetation types according to their spectral characteristics and 
the results from accuracy assessment. Therefore, large varia- 
tions in the accuracy were primarily due to the method of com- 
pletely random seed assignment. The johnsongrass plots 
consisted of two major spectral classes. One spectral class co- 
occurred in pigweed plots and the other co-occurred in sor- 
ghum plots (i.e., one-to-many reIationship). According to the 
rules of unsupervised classification for a one-to-many relation- 
ship stated in Lillesand and Kiefer (2000), the pixels in these 
two spectral classes were assigned to pigweed and sorghum, 
respectively, rather than to johnsongrass. Consequently, this 
led to poor accuracies for johnsongrass. 

As shown in Figure 5, a two-dimensional, hypothetical 
case with two spectral clusters is helpful to illustrate this situa- 
tion. Assume these two clusters are formed from two distinct 

Results and Discussion 
There were eight bands in the two-date video image data used 
for testing the clustering algorithms. The total number of band 
combinations (i.e., ,C, + ... + ,C,) was equal to 255. Thus, it 
was impractical to test the algorithms for all of the band combi- 
nations. Because the two algorithms were developed based on 
Euclidean distance, this study applied the program module 
Separability/Euclidean Distance Measure in ERDAS Imagine 
8.3.1 software to determine the appropriate bands for classifi- 
cation. As a result, the band combination of 2,3,4, and 8 with 
best separability was chosen for the test. 

but spectrally similar land-cover types. They are denoted by A 
and B, respectively. Assume two sets of initial seeds are gener- 
ated randomly; the initial seeds in the first set are denoted by 
1,2, and those in the second are denoted by 3,4. For the first set 
of initial seeds, the pixels in cluster A are assigned to seed 1 
and the pixels in cluster B are assigned to seed 2 according to 
the nearest-neighbor criterion. By contrast, pixel Ax is the 
nearest one to seed 4 in cluster A and pixel Bx is the nearest one 
to seed 4 in cluster B for the second set of initial seeds. Because 
of D,, > D3, and D4Bx > DSBx, pixels Ax and Bx are assigned to 
seed 3. Thus, all of the remaining pixels in clusters A and B are 
assigned to seed 3 rather than to seed 4. The second set of initial 
seeds will result in the incorporation of clusters A and B, 
which in turn will lead to a significant loss in accuracy of the 
merged class (either cluster A or B). 

This study also applied the method of initial seed assign- 
ment proposed by ERDAS (1997) to pick the locations of the 

TABLE 2. CLASSIFICATION ACCURACIES OF ISODATA USING SIX SETS OF 
RANDOMLY GENERATED INITIAL SEEDS 

Set of Initial Seeds 1 2 3 4 5 6 
Land-Cover 'Qpe (%) (%I (%) (%) (%) (%) 

Cotton 90 92 91 92 69 67 
Soil 98 98 99 99 97 98 
Johnsongrass 37 61 0 0 0 0 
Cantaloupe 96 67 94 65 94 96 
Pigweed 97 86 98 99 97 69 
Sorghum 93 95 96 97 65 62 
Overall Accuracy (%) 85 83 80 75 70 65 

The band combination of 2, 3, 4, and 8 was chosen for this test. 
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Figure 5. A two-dimensional, hypothetical case with two 
spectrally similar but distinct clusters illustratingthe incorpo- 
ration of the two clusters caused by an inappropriate initial 
seed assignment, which in turn will lead to poor classifica- 
tion results. 

TABLE 4. THE COMPUTING TIME SPENT BY [SODATA USING THE TWO METHODS 
OF INITIAL SEED ASSIGNMENT 

Random Seed Assignment ERDAS's Seed Assignment 

Computing Number of Standard Computing 
Set Time (Seconds) Deviations Time (Seconds) 

1 17 1 94 
2 26 2 103 
3 21 3 68 
4 19 4 41 
5 23 5 30 
6 15 - - 
Average 20 Average 67 

The band combination of 2, 3, 4, and 8 was chosen for this test. 

inappropriate random seed assignments caused the incorpora- 
tion of distinct but spectrally similar ground-cover types in the 
clustering process, and in turn resulted in a great loss in accu- 
racy of the merged class (i.e., johnsongrass). The initial seeds 
that could not form clusters were eliminated after the first iter- 
ation, and the actual number of clusters that remained in the 
iterative process was less than the number of clusters initially 
specified. In general, the computing time of ISODATA is posi- 
tively related to the number of clusters because, at each itera- 
tive step, all of the pixels in the entire data set must be checked 

initial seeds required by ISODATA. Namely, the initial seeds against every cluster center (Richards, 1993). Therefore, the 
were evenly distributed in n-dimensional spectral space cascading effect of inappropriate random seed assignments fre- 
between the points at the coordinates (pl - k* ax ,  ..., p, - k* quently resulted in the acceleration, instead of prolongation, of 
a,) and (pl + k* al, ..., p, + k* a,), where p is  the meanvector, convergence, thereby greatly reducing processing time spent 
a is the standard deviation, and k is the number of standard on clustering. 
deviations. Table 3 presents the classification results generated 
from ISODATA using five sets of the initial seeds placed along Comparison between the Two Clustering Methods 
vectors defined by p + l *  a ,  ..., p f 5* a ,  respectively. Overall 
accuracies varied from the highest at 93 percent for p 2 l *  a to Computing Time 
the lowest at 75 percent for p t 4* a and p f 5* a in this case. 
Clearly, E ~ A S ' s  ISODATA program still suffered from this limi- Table 5 presents the lengths of computing time of two clustering 
tation. Furthermore, the researcher did spend "analyst algorithms, varying with the number of pixels in the data set 
timew on determining the optimal number of standard devia- they processed and the number of clusters generated. The 
tions from one to five in the study. In contrast, SYNERACT elimi- lengths of computing time spent by ISODATA were 5 to 39 (TI/ 
nated the need for picking the initial clusters in advance, Ts) times longer than those spent by SYNERACT, as the number 
thereby avoiding the limitation and saving much analyst time. of pixels increased from 3,400 to 17,640. As the number of ~ i x -  
Hence, this was a chief benefit of SYNERACT. els was fixed and the number of clusters was increased from 8 

to 16, the increase in computing time for ISODATA was still 
Influences of Initial Seed Assignment on Processlng Time much greater than that for SYNERACT. Table 6 presents the 
Table 4 presents the lengths of processing time of ISODATA using lengths of computing time of two clustering algorithms as a 
the two methods of initial seed assignment. ERDAS's method 
took a much longer time than did the method of completely ran- 
dom seed assignment; the average length of the former was 
about 3.3 (67120) times longer than that of the latter, although 
the former performed much better in accuracies than did the 
latter. As explained in the hypothetical case shown in Figure 4, 

TABLE 3. CLASS~FICAT~ON ACCURACIES OF ISODATA USING ERDAS's METHOD 
FOR lNlTlAL CLUSTER ALLOCATION 

ka ' la 20 3u 4 a  50 
Land-Cover Type % (%I (%) (%) (%) 

Cotton 91 85 89 94 92 
Soil 97 99 97 99 98 
Johnsongrass 92 59 34 32 0 
Cantaloupe 96 95 95 98 95 
Pigweed 8 7 98 66 64 98 
Sorghum 96 91 96 63 6 7 
Overall Accuracy (%) 93 88 80 75 75 

The band combination of 2, 3, 4, and 8 was chosen for this test. 
lk = Number of Standard Deviations; a = Standard Deviation. 

TABLE 5. THE COMPUTING TIME SPENT BY SYNERACT AND ISODATA FOR 

DIFFERENT NUMBERS OF PIXELS AND NUMBERS OF CLUSTERS 

SYNERACT ISODATA 
- 

Number Number Number Number 
of of Ts of TI of 

Pixels Clusters (Seconds) Iterations (Seconds) Iterations TIITS 

3400 8 2.1 3 11.5 30 5 
16 3.1 6 17.2 24 6 

6460 8 3.6 4 24.0 3 5 7 
16 5.1 5 55.1 42 11 

9499 8 5.2 7 54.1 56 10 
16 7.0 10 84.6 45 12 

12284 16 8.8 7 258.4 105 29 
32 12.2 14 311.9 64 26 

17640 16 12.3 7 478.7 138 39 
32 16.5 17 341.4 49 21 

The band combination of 2, 3, 4, and 8 was chosen for this test. 
The initial seeds for ISODATA were placed along the vector defined 
by /.L t 1*u. 
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TABLE 6. THE COMPUTING TIME SPENT BY SYNERACT AND ISODATA FOR parameter, m, was used to test the relevance of a split and to SEVEN SETS OF BAND COMBINATIONS eliminate unnecessary clusters. Generally, a minimum of Ion 
SYNERACT ISODATA to lOOn training pixels is selected for each class when any sta- 

tistically based classifier is used in supervised classification, 
Number Number 

Band 
where n is the number of bands (Lillesand and Kiefer, 2000). 

Ts of TI of This broad guideline can be extended to specify the second 
Combination (Second) fierations (Second) Iterations TllTs parameter, 

The optimal values of the parameter for this 
3 8 3.9 6 64.6 69 17 study ranged from 7 percent to 9 percent. Clearly, SYNERACT 
3 4 8 5.4 8 99.4 70 18 eliminated the need for specifying the initial clusters in 
2 3 4 8  7.0 10 84.7 45 12 advance and required a minimum of user input, thereby saving 
2 3 4 5 8  8.0 4 74.8 33 
1 2 3 4 5 8  

9 much analyst time. Accordingly, SYNERACT was more user- 
10.6 8 93.2 35 

1 2 3 4 5 6 8  12.1 8 69.0 22 
9 friendlier for the beginner than was ISODATA. 
6 

1 2 3 4 5 6 7 8  13.3 8 92.0 26 This study also attempted to use two splitting parameters 
proposed by Viovy (2000) for testing the relevance of a split. 

These band combinations were chosen using ERDAS Imagine 8.3.1 Most of the calculated proportions for aranging from 25 per- 
software according to Euclidean distance measure. cent to 70 percent were greater than 20 percent, and most of the 
The initial seeds for ISODATA were placed along the vector defined by calculated values for pwere greater than 0.95, even greater than 
p * 1*0. 
The number of pixels = 9,499; the number of clusters = 16. 

1.00, for the video image data set used in the study. The two 
tests frequently failed at the root or the first level of a binary 
tree. As a result, these two splitting parameters could not be 
applied to this study. The possible reason is that these two 

function of different band combinations. The lengths of paPameters are suited for a data set containing spectrally 
puting time spent by IsoDATA were 6 to 17 (TI /~s)  timeS greater similar but distinct land-cover types, as did the data set used in 
than those spent by SWRACT, as the number of bads varied this study. Furthermore, the threshold values for ff (20 percent) 
from two to eight. and p(0.95) suggested by Viovy were determined from simu- 

Note that the number ofiterations performed by SYNERACT lated data sets, instead of real remotely sensed data, and they 
for each case in Tables 5 and 6 was remarkably fewer than that have not been to data set. 
done by ISODATA. Because SYNERACT was able to determine the 
appropriate (or probably optimum] locations for the initial C'ass'flcatlon Accuracy 
seeds automatically from the data set itself, this greatly reduced presents the accuracies and the accuracies of 
the number ofiterations needed for means and accel- individual categories for the two clustering approaches. The 
crated reaching a convergence threshold. Thus, S Y ~ R A C T  was accuracy (92 percent) sYNERACT was about per- 
not so heavily dependent on the iterative process as was cent lower than that of ISODATA (93 percent). Nevertheless, 
ISODATA. Furthemore, because the biggest cluster formed by all that the price of attaining the accuracy of IsoDATA was 
pixels placed at root was progressively subdivided, the n-- much more time On determining the 'ptimal 

of pixels at every node on each level was decreased with the number of the standard deviation, from one to five for this case, 
increase in level number ofa binary tree. While performing the when ERDAS's method of initial seed assignment was used. 
iterative optimization procedure, s.RACT did not have to do Indeed, the analyst time spent on picking the initial seeds was 
the same task at each node-to check all of the pixels in the data much longer time taken IsoDATA in this 
set against every cluster centers-as ISODATA did, thereby sav- The differences in for four catego- 
ing much processing time. consequently, sYNERACT was much ries between SYNE~ACT and ISODATA were less than 3 percent, 
faster than ISODATA, irrespective of which one of the three vari- except that the differences in accuracy for johnsongrass and 
ables (the number of pixels, clusters, or bands) was increased. pigweed were greater than percent. The accuracy for john- 

This was a second benefit of SYNERACT. songrass associated with ISODATA (93 percent) was 7 percent 
higher than that for SYNERACT (86 percent), whereas the accu- 

Ease of Use racy for pigweed associated with SYNERACT (91 percent) was 6 
percent higher than that for ISODATA (85 percent). Accordingly, 

The input parameters of SYNERACT were compared with those 
of ISODATA in order to understand the ease of use of these two 
algorithms relative to the analyst. The algorithm of ISODATA TABLE 7. CLASSIFICATION ACCURACIES OF THE SYNERACT AND ISODATA 
proposed by Ball and Hall (1967) requires four (or five) input METHODS 
parameters: the number of clusters and their initial locations, 
the splitting threshold, the minimum percentage of pixels in a SYNERACT ISODATA Total Number 
cluster, and the merging threshold. A sophisticated ISODATA Number Number of Test 
algorithm described by Jensen (1996) normally requires the of of Pixels 
analyst to specify seven parameters, which are similar to those Correct Accuracy' Correct Accuracy for Each 
just mentioned above. The ISODATA program of ERDAS Imagine Land-Cover Tyjte Pixels (%) Pixels (%) Type 
software (Version 8.3.1) requires the user to specify four param- 

Cotton eters similar to those shown above and to initialize cluster Soil 2026 90 
2076 93 2243 

2102 97 2096 97 2163 means along a diagonal axis or principal axis. Note that the ~~h~~~~~~~~~ 1841 86 1983 93 2130 
researcher spent much more analyst time on specifying the ini- Cantaloupe 2114 95 2119 95 2230 
tial seeds when using ISODATA in this study. Pigweed 1956 91 1815 85 2143 

In contrast, SYNERACT required the analyst to specify only Sorghum 2058 90 2127 93 2277 
the two parameters already mentioned previously. As pointed Total 12097 - 12306 - 13186 
out by Richards (1993), there are about two to three spectral Overall AccuracyZ - 92 - 93 - 
classes per information C ~ S S  On the average; C- should be The band of 2, 3, 4, and 8 was chosen for this test. 1 chosen conservatively high, with a view to eliminating winec- lAccuracy = Number of Correct PixelslTotal Number of Test Pixels for 
essary clusters at a later stage. SYNERACT began by specifying Each Type. 
this number according to the rule just stated. The second 20verall Accuracy = Total Number of Correct Pixelsl13186. 
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SYNERACT and ISODATA I4lere equally matched in classification
accuracy.

Conclusions
This study developed sYNERACT based on the principles ofhyp-
erplane, dynamical clustering, and binary-tree. SYNERACT
required a minimum of user input with only two parameters,
thereby saving much analyst time spent on specifying input
parameters by trial and error. By_comparison' ISODATA was not
irser friendlybecause it required the user to spend a much
longer analyst time on specifying input_parameters, particu-
larli' the iniiial cluster centers. This study showed that an inap-
probriate choice of this parameter for ISODATA significantly
ieduced final classification accuracies, regardless of adopting
the method of completely random seed assignment or ERDAS's
method, This outcome obviously was contrary to the ideas
pointed out by Richards (1993) and ERDAS (1997)' In contrast,
sytrtsRAct had the ability to determine this parameter automati-
cally from the data set itself once a hyperplane splitting two .
clusters was generated, and thus saved much analyst time and
avoided the poor classification accuracies caused by an inap-
propriate choice of this parameter.

sYNERACt's compuiing time did not increase significantly
with an increase in numbers of pixels or bands; however, the
reverse relation held true for ISODATA. SYNERACT made a much
smaller number of passes through the data set than did ISODATA
owing to SYNERACT's capability to find suitable locations for the
initial seeds automatically. Thus, SYNERACT was very fast,
whereas ISODATA was time-consuming' SYNERACT was able to
compete with FODATA in classification accuracy. In-sum,
sYNERACT was really efficient and well suited as an alternative
to ISODATA for applications in remote sensing image arralysis
involving a large data set, which was contrary to the thoughts
proposed by Richards (1993).
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