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Abstract 
Over the past decade, a number of initiatives have been 
undertaken to create definitive national and global data sets 
consisting of precision corrected Landsat Multispectral Scan- 
ner [MSS)  and Thematic Mapper (TM) scenes. One important 
application of these data is the derivation of large area land- 
cover products spanning multiple satellite scenes. A popular 
approach to land-cover mapping on this scale involves merg- 
ing constituent scenes into image mosaics prior to image 
clustering and cluster labeling, thereby eliminating redundant 
geographic coverage arising from overlapping imaging swaths 
of adjacent orbital tracks. In this paper, arguments are pre- 
sented to support the view that areas of overlapping coverage 
contain important information that can be used to assess and 
improve classification performance. A methodology is pre- 
sented for the creation of large area land-cover products 
through the compositing of independently classified scenes. 
Statistical analyses of classification consistency between scenes 
in overlapping regions are employed both to identify mis- 
labeled clusters and to provide a measure of classification 
confidence for each scene at the cluster level. During clas- 
sification compositing, confidence measures are used to 
rationalize conflicting classifications in overlap regions and 
to create a relative confidence layer, sampled at the pixel level, 
which characterizes the spatial variation in classification 
quality over the final product. The procedure is  illustrated 
with results from a synoptic mapping project of the Great Lakes 
watershed that involved the classification and compositing of 
46 Landsat MSS scenes. 

Introduction 
Within the last decade, a number of initiatives have been under- 
taken to assemble databases of precision processed Landsat 
imagery. These activities have included both MSS, e.g., the 
North American Landscape Characterization (NALC) program 
(Lunetta et al., 1998), and TM imagery, for example, the Multi- 
resolution Land Characteristics (MRLC) consortium (Loveland 
and Shaw, 1996) and the GEOCover (Dykstra et al., 2000) pro- 
grams. One of the most important systematic uses of these data 
is large-area land-cover mapping, for example, the creation of 
the National Land Cover Data (NLCD) product for the contermi- 
nous United States (Vogelmann et al., 2001). 

Satellite-based land-cover products gained widespread 
endorsement within the remote sensing community because of 
their potential for providing valuable large-area information. 
On the other hand, the acceptance of such information prod- 
ucts by the "outside world," (i.e., decision makers and resource 
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managers), requires that their accuracy characteristics be rigor- 
ously quantified and documented. This presents two important 
challenges for information producers: 

For moderate resolution sensors such as those carried by the 
Landsat series of satellites, large-area coverage can only be 
achieved by merging scenes acquired over a relatively broad 
temporal window. For example, in the case of the NALC pro- 
gram, this window was targeted to span three consecutive grow- 
ing seasons for each "epoch" data set (Sohl and Dwyer, 1998). 
As a consequence, the constituent scenes can exhibit a range 
in information detail related to differences in vegetative devel- 
opment, soil moisture, and atmospheric conditions. This char- 
acteristic, in conjunction with intra-product variations in class 
proportions, can be expected to lead to significant intra-product 
spatial variations in accuracy. 
In addition, current accuracy assessment methods rely in large 
part on detailed comparison between derived information and 
independently acquired "ground truth" (Congalton and Green, 
1999). Because of cost and logistics, ground truth tends to be 
limited and can be viewed as a "spot checking" exercise. In 
addition, truth information is most easily acquired in regions 
where thematic class purity exists, whereas image classifica- 
tions are most likely to be uncertain near inter-class boundaries. 
We suggest that a preferred accuracy assessment strategy is one 
that couples limited ground-truth testing (absolute accuracy 
checking) with a "wall-to-wall," albeit indirect, method of rela- 
tive classification consistency mapping at the individual 
pixel level. 

A widely-used processing approach to large-area mapping 
involves merging multiple scenes into regional image mosaics 
(e.g., Homer etal., 1997; Vogelmann etal., 1998) that are then 
classified. The apparent advantages of this procedure are that 
(1) it reduces the processing load by eliminating redundant 
ground coverage that is present due to overlapping imaging 
swaths of adjacent satellite tracks and (2) it eases the data man- 
agement and classification load because only a relatively small 
number of mosaics have to be dealt with rather than a large 
number of distinct scenes. For example, in the NLCD land-cover 
initiative, the conterminous U.S. was mapped with a set of 
regional mosaics, each consisting of 16 to 20 scenes (Vogel- 
mann et a]., 1998; Vogelmann et al., 2001). 

The repeat coverage available from overlapping imaging 
swaths has been a largelv unex~loited characteristic of scene 
data sets. It is argued &at, becake an individual scene may be 
subject to significant limitations in information content, it is 
desirable that the full information content of the parent image 
data set be harnessed, including all data in overlap regions. In 
this paper, a large-area land-cover mapping methodolgy is 
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described involving independent clustering and classification 
of individual scenes followed by classification "compositing" 
to create a final large-area product. Within this methodology, 
overlapping classifications are compared and employed in two 
ways: 

Classification Error Checking. By comparing the consistency of 
a scene classification with those of its overlapping neighbors, 
clusters that are likely to be mislabeled can be identified. 
Accuracy Characterization. An indirect measure of classifica- 
tion confidence can be derived for each cluster in each scene 
based upon classification consistency of its member pixels with 
neighboring scenes. This measure can then be used during the 
compositing process both to rationalize conflicting classifica- 
tions in overlap regions as well as to generate a net classification 
"confidence" for each pixel in the final land-cover product, 
thereby encapsulating intra-product quality variations. It 
should be noted that this form of "relative" accuracy assessment 
is complementary to conventional comparison with "ground 
truth" (i.e., "absolute" accuracy assessment). The former has 
the added advantage that overlap regions can constitute a sig- 
nificant portion of a mapped area, especially at high latitudes, 
while ground-truth sampling tends to be sparse. Others have 
suggested using overlap regions for accuracy characterization, 
not for classification but rather for landscape metric estimation 
(Brown et al., 2000). 

The research presented here was undertaken as part of a 
joint Canada Centre for Remote Sensing (CCRS) United States 
Environmental Protection Agency (USEPA) effort to generate 
and interpret multi-temporal synoptic land-cover maps of the 
Great Lakes watershed derived from combined NALC and Cana- 
dian-processed Landsat MSS imagery. The goal is a spatially 
consistent classification involving six broad classes (water, for- 
est, agriculture, urbanldeveloped, natural grasslands, and bar- 
ren). A conventional classification approach is being employed 
involving scene-based unsupervised clustering followed by 
interactive cluster labeling. 

In the next two sections we discuss the broad accuracy 
issues of cluster-based labeling and introduce the concept of 
classification consistency analysis in inter-scene overlap 
regions as a way to characterize accuracy at the cluster level. 
This will be followed by the development of specific accuracy 
assessment methodologies to support label error identifica- 
tion, compositing of scene-based classifications to generate 
large area products, and the creation of a corresponding confi- 
dence layer. The approach was applied to the generation of a 
land-cover product of the Great Lakes watershed from 46 com- 
posited scenes. A simple stratification of the product (forest vs. 
non-forest land) is analyzed within the context of a simple sta- 
tistical model. Finally, we briefly describe how consistency 
analysis can be adapted to mosaic-based classification. 

Relevant Aspects of Cluster-Based Classification 
There are a number of characteristics of cluster-based labeling 
that have consistency and accuracy implications: 

Unlike "textbook" examples of clustering, pixels rarely aggre- 
gate into distinct clusters in spectral space that correspond to 
the classes of interest. This leads to difficulties in determining 
the number of relevant clusters of a data set. For this reason, 
the number of clusters is usually set much higher than the 
number of classes sought (e.g., Vogelmann et al., 1998). 
Each class typically is represented by a number of clusters. The 
"classification" qualities of these clusters can be expected to 
vary. Intuitively, one expects clusters residing far kom intra- 
class transition zones in spectral space to contain far fewer 
misclassified pixels than those near such zones As a result, an 
accuracy confidence measure is needed at both the cluster and 
the class levels. 

To better understand the labeling scenarios that can arise 
in the case of clusters, consider the simple case of two classes, 
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Class A and Class B. Of the clusters labeled as Class A, we iden- 
tify four major types based upon their pixel contents and label- 
ing results. 

Type a. Clusters that consist predominately of "pure" "true" 
Class A pixels that have been correctly labeled as Class A. me b. Clusters that consist predominately of "pure" "true" 
Class B pixels that have been incorrectly labeled as Class A. 
Type c. Clusters that consist primarily of spectrally "mixed" 
pixels that have been labeled as Class A. 
'Qpe d. Clusters that contain significant numbers of both 
"pure" "true" Class A and "pure" "true" Class B pixels. These 
clusters are located in a portion of spectral space where classes 
A and B are spectrally indistinct. For example, the spectral sig- 
natures of urban areas and fallow agricultural fields will be sim- 
ilar within the restricted spectral space of Landsat MSS 
imagery. 

Now consider the case where two partially overlapping 
scenes are seaaratelv clustered and labeled. These classifica- 
tions will exhbit a degree of independence because (1) the 
scenes may have been acquired at different dates (as with Land- 
sat scenes from adjacent tracks) and (2) the cluster characteriza- 
tions will be different because they are based upon different 
overall parent pixel populations. As a result, the pixels consti- 
tuting a single cluster of one scene are expected to be distrib- 
uted among a number of clusters in the other scene. Classifica- 
tion consistency analyses should provide insights into the . 
likely labeling type of those clusters with significant represen- 
tation in the overlap region and hence point to those clusters 
whose labels require further review. 

Label Error Checking 
A three-step methodology is used for assigning a classification 
"category" to each scene-based cluster where the category 
indicates the confidence in the labeling result. This categoriza- 
tion is then used iteratively to improve classification consis- 
tency across scene boundaries. 

Because consistency checking is a relative process, it will be 
increasingly effective with increasing and comparable levels 
of producer accuracies of the two scenes. If this is the case, clus- 
ters with suspect labels should be identifiable through an "out- 
lier" analysis process. This prerequisite condition can be 
assessed by generating a contingency table of label agreement 
at the pixel level whose (1,J)~ element represents the number of 
pixels in the overlap region that have been assigned label I in 
one scene (Scene #1) and label J in the other (Scene #2). 

Step 2 
In this step we analyze the level of classification agreement at 
the cluster level. For example, consider some cluster a, in 
Scene #1, that is labeled as Class A. For pixels of cluster a 
located in the overlap region, we generate a summary of their 
corresponding assigned labels in Scene #2. We can assign clus- 
ter a to one of three possible categories. 

Category I .  A high proportion of the pixels of cluster a have 
the same label (Class A) in Scene #2. We have added confi- 
dence that the pixels of cluster aare correctly labeled, i.e., that 
cluster a is of Type a described in the previous section. 

Category 2. A high portion of the pixels of cluster a have 
been labeled as Class B in Scene #2 where B # A. A significant 
inconsistency is present, indicating that cluster a may be of 
Type b, (i.e., it may be mislabeled and hence requires further 
scrutiny). 

Category3. Significant portions of the cluster apopulation 
are assigned to each of two or more classes in Scene #2. This 
inconsistent labeling result suggests that cluster a may be of 
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either Type c or Type d, but the resolution of this ambiguity measure of classification confidence is assigned that is propor- 
requires further information. tional to the level of agreement of its parent cluster, thereby 

To employ the above categorization, one needs to define creating a scene "confidence" layer based upon consistency. 
two "proportion-of-agreement" thresholds; an upper one, TU, to The statistical relationship between consistency and inherent 
delineate Category 1 clusters and a lower threshold, TL, to delin- scene classification accuracy will be developed in the next sec- 
eate Category 2 clusters. Those clusters with agreement propor- tion. In the compositing process, confidence is "accumulated" 
tions between these thresholds will belong to Category 3. at the product pixel level as new scenes are added. The final 

If we define FA to be the overall fraction of pixels of Class A composited product will then also contain two layers, namely, 
in Scene #1 that have the same label in Scene #2, then as a first the final classification and the accumulated confidence layer 
approximation we could use FA as the upper threshold to test that reflects, at the pixel level, both the number of available 
for all clusters. A drawback of this simple approach is that it scene classifications and their levels of agreement. The follow- 
does not take into account uncertainties in proportion estima- ing cornpositing algorithm is proposed: 
tion associated with unequal cluster populations. To account Let L(x,y) be the current classification label of the composite 
for cluster size variations, we derive cluster-specific threshold at location (x,y), C(x,y) be the current accumulated confi- 
values based on FA and binomial theory confidence estimation dence for the current label, sl(x,y) be the classification label 
(Thomas and Allcock, 1984). For example, consider the case of at location (x,y) of a new scene, and sc(x,y) be the confidence 
a cluster, a; labeled A in Scene #1 with a population of N, pix- value at location (x,y) of the new scene. 
els in the overlap region of which a proportion, F,, has the same C, I: L(x,y) = o, i.e., the has no current label in Scene #2. We assign the cluster to Category 1 if This can arise either if the location has had no coverage from 

previously cornposited scenes or if all earlier scenes were cor- 
F, > Tu = FA - AFA ('1 rupted by cloud or cloud shadow at location (x,y). Then 

where AFA allows for a statistical uncertainty in an estimate of 
FA given a sample size of N,. We set this parameter to the 99.9 L(x,y) = sl(x,y) and (4) 

percent confidence interval. C(X,Y) = SC(X,Y). (5) 

AFA = [3s(l + 1m + I I ~ ) I / N ,  (2) Case 2: L(x,y) > 0 and L(x,y) = sl(x,y), i.e., the current com- 
posite has a label which is the same as that as the scene being 

where s = 4- and a = 1 - FA, the proportion of dis- added. Then 
agreement. 

The lower threshold can be based on the overall proportion L(x,y) is unchanged and 
of disagreement for pixels, &, of Class A (i.e., = (1 - FA)). 
In this case, if the observed proportion of agreement satisfies C(X,Y) = C(x,y) + sc(x,y), 

the inequality 
i.e., the confidence is increased by the confidence level of the 

F, < TL = Q, - AFp,, (3) Scene. 
Case 3: L(x,y) > 0 but L(x,y) # sl(x,y), i.e., there is a conflict 

between the current composite classification and the classifi- 
then the cluster is assigned to Category 2. cation of the new scene. This leads to three sub-cases. 

All clusters not satisfying conditions expressed by either Case 3a: If C(x,y) > sc(x,y), i.e., the accumulated confi- 
Equation 1 or Equation 3 are assigned to Category 3. dence of the current composite exceeds the confidence level of 

the new scene, then 
Step 3 
Once each cluster in Scene #1 has been given a provisional cate- L(x,y) is unchanged and gorization, clusters other than those of Category 1 should be (7) 

reviewed, resulting in possible re-labeling or cluster splitting C(X,Y) = C(X,Y) - sc(x,y). 
actions. Note that the same process is applied to Scene #2 clus- 
ters. Following review, the categorization process can be Case 3b: If C(x,y) < sc(x,y), i.e., the confidence level of the 
repeated and in this way the most consistent, iterative solution new scene exceeds that of the accumulated confidence of the 
can be reached. current composite classification, then 

In practice, a Landsat scene will exhibit significant overlap 
with up to four other scenes (i.e., two cross-track and two L(x,y) = sl(x,y) and 
along-track neighbors). When assigning a category to a cluster, (8) 

we compute the above statistics based on the aggregate level of C(X,Y) = SC(X,Y) - C(X,Y). (9) 
agreement over all overlap regions. 

Case 3c: If C(x,y) = sc(x,y), i.e., there is equal confidence 
Classification Compo~iting supporting each of the conflicting classifications. In this case, 
Once final classifications for each scene have been achieved, one must utilize additional information to resolve the conflict. 
their fusion into a final seamless classification mosaic can be In our implementation, a set of heuristics, based on the distri- 
undertaken through a compositing process. To proceed, one bution of classifications in a 3 by 3 window centered on (x,y) in 
requires a classification layer and a "confidence" layer for each both the composite and the scene, is utilized. First, if either 
scene. The confidence layer should provide an estimate of the L(x,y) or sl(x,y) differs from all of its eight neighbors, its label is 
classification quality of each pixel. As discussed earlier, abso- discarded, thereby reducing "salt and pepper" effects in the 
lute accuracy estimation is not feasible at this level of detail, final composite. If this occurrence is not present, the label is 
Instead, an estimate of confidence is computed based upon selected that is in best agreement with its eight neighbors. 
inter-scene classification consistency. For a given scene, this Once a class label is selected, the composite confidence is set 
involves tabulating the aggregate fractional agreements in clas- to zero. 
sification for each of its clusters with the classifications of its The compositing methodology has a limitation for those 
available overlapping neighbors. To each pixel in the scene, a product locations, (x,y) where three or more scenes ~rovide  
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classification estimations. Because, in our current implementa- of true Class A and Class B pixels in the region be NA and NB, 
tion, scenes are added sequentially to the composite, classifi- respectively. One can now proceed to generate a contingency 
cation conflict resolution will only be independent of the order table summarizing the consistency of the two classifications. 
of scene entry if it involves a conflict between two classes. This The numbers of pixels classified as A and B in Scene #1 will be 
risk has been deemed acceptable given that for Landsat the pro- given respectively by 
portion of area covered by three or more scenes is small and 
that most realistic classification confusions arise between class MA = NAPA + N B ( ~  - PB) 
pairs. However, it is emphasized that this problem is an imple- 
mentation issue that can be overcome through the use of addi- and 
tional temporary storage layers that allow for the simultaneous 
comparison of all classification candidates at a given (x,y). MB = NBPB + N A ( ~  - PA) (11) 

Great Lakes Example where pA and pB are the probabilities of correction classifica- 
Antdimentary land-cover product of the GreatLakes watershed, tion of true Class A and Class B pixels, respectively (i.e., pro- 
in land has been categorized into two classes (forest and ducers accuracies). In each equation, the first term indicates the 
non-forest), is used to illustrate key issues, in particular, accu- number of correctly classified pixels while the second term 

racy impacts related to spatial variations in class proportions. the number 
The Great Lakes product is sampled at 3 arc seconds in longitude If these classified pixels are compared to the correspond- 
by 2 arc seconds in latitude (approximately 70 meters) and has ing classification in Scene #2 that exhibits probabilities of cor- 
been created through the independent classification and corn- rect classification of and q ~ ,  one can formulate the four 
positing of 46 scenes using the algorithms described in previous elements of the two-way contingency table. For e x a m ~ l e ~  of the 
sections, During this process, each scene was partitioned into pixels classified as A in Scene #I, the numbers classified as A 
150 clusters using the K-means algorithm, and the clusters were and in Scene #2 be 
assigned one of five labels (water, forest, non-forest, cloud, or 
cloud shadow). Because land-water confusion is low and the MAA = NAPA~A + N B ( ~  - P B ) ( ~  - q ~ )  (12) 
cloud-related classes can be considered cases of "no data," we 
have restricted our analysis to the classification consistencv of and 

the two land categories.-A total of 76 cross-track overlap reiions 
were used in the analysis. Figure 1 illustrates a portion of the MAB = NAPA(~ - q ~ )  + N B ~ B ( ~  - PB), (13) 

product, centered in northern Michigan and respectively. Similarly, for those pixels classified as B by Scene 
butions from approximately 20 scenes. #1, the numbers classified as B and A, i.e., MBB and MBA, can be 

Statistical Model for a TwHlass Consistency 
readily estimated from the above two equations by reversing 

Consider the case of a classification scenario involving two the subscripts of A and B. 
The number of true Class A and Class B pixels (i.e., NA and 

A and B, and an regi0n that has been inde~en- NB) are unknown. However, one can derive a number of statis- dently classified in two scenes. Furthermore, let the numbers tical measures that can be estimated from the population con- 

Figure 1. A portion of the Great Lakes landcover product 
centered on the region of northern Michigan. The classes 
include water (dark), non-forest (medium grey), and forest 
(white). The area includes landcover information from 
approximately 20 Landsat scenes. 

tingency tables extracted from real scene overiapregions. This 
comparison between theory and observation is done using only 
overlaa reeions between adiacent-track scene nairs in order to . " 
ensure maximum independence of the classifications (76 
cases). In addition, some further observations lead to a simpli- 
fied formulation. First, two broad factors will affect the relative 
sizes of the entries in a contingency table, i.e., (1) the individ- 
ual scene producer accuracies as indicated by the probabilities 
of correct classification and (2) the relative proportions of true 
class pixels. Given the broad classes (forest vs. non-forest) in 
the Great Lakes example, one would expect consistently high 
producer accuracies for most scenes. On the other hand, the rel- 
ative proportion of forest to non-forest land varies dramatically 
from approximately 1:10 in the south to 10:l in the north and, 
hence, variations in user accuracy will be dominated by the 
proportional factor. The Great Lakes example provides a good 
opportunity to study this factor, which is typically difficult to 
assess from conventional confusion matrices. 

From the above arguments, the model formulation can be 
simplified by replacing all probabilities by a single unknown 
probability p. As a result, the elements of the contingency table 
become 

MAB = MBA = (NA + N ~ ) p ( l  - p), and 

Observable Statistlcal Measures 
Below we list a number of statistical measures that can be 
extracted from overlap contingency tables of real scenes. 
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FA = fraction of those pixels classed as A in Scene 
#1 which are also classed as A Scene #2. 

= Mu /(Mu + Mm). 

Similarly, the fractional component of classification agreement 
for Class B will be 

EA = estimated proportion of the overlap region that is 
of Class A based on the Scene #1 classification 

= (MAA + MAB)/(MAA + 2M.u + MBB). (19) 

Figure 2a illustrates the relationships of FA versus FB for 

selected producer accuracies, p, where Class A is set to forest (F) 
and Class B to non-forest (NF). Each curve is derived by varying 
the ratio of NA to NB from 0 to 1. To understand the predicted 
behavior, consider one example, namely, the curve for p = 0.9. If 
NA = 0, then all pixels classified as A will be commission errors, 
(i.e., 10 percent of NB), and, hence, the classification agreement 
between scenes for this class will be low. On the other hand, 90 
percent of the Class B pixels will be correctly classified in each 
scene, and of these, 90 percent will be in agreement between 
scenes or 81 percent of the complete NB sample. When all of the 
overlap pixels are of true Class A, the roles of the classes are 
reversed. As the fraction of true Class A pixels in the overlap 
region gradually increases from 0 toward 1, FA increases. This 
occurs because the proportions of pixels classed as A in each 
scene that are correct increase, thereby increasing the probability 
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Figure 2. Comparison of predicted classification consistency parameters for a twoclass statistical 
model with observed forest (F) vs  non-forest (NF) classification results for 76 overlap regions of 
the Great Lakes data set. FF is the fractional agreement in forest classification, FNF is the fractional 
agreement in non-forest classification, and EF is the estimated proportion of forest based on the 
classification of one scene. Model predictions for three producer accuracy levels (0.7, 0.8, and 
0.9) are shown in plots (a) and (c) with corresponding observed data in (b) and (d), respectively. 
The majority of overlap regions in the Great Lakes data set are consistent with a producer accuracy 
of approximately 0.9. 



TABLE 1. SUMMARY OF THE IMPACT OF CLASSIFICATION COMPOSITING ON USER 
ACCURACY FOR THE TWOCLASS SCENARIO (ASSUMED PRODUCER ACCURACY 

NA < NB, hence FA < FB. 

OF 0.9) AS A FUNCTION OF THE FRACTIONAL REPRESENTATION OF CLASS A, I.E., 
NA/(NA + Ns). FOR A CLASS WITH LOW TRUE PROPORTIONAL 

Only those pixels which were classed as A in both scenes 

REPRESENTATION, I.E., CLASS A, COMPOSITING CAN SIGN~~CANTLY ENHANCE USER 
will be composited as Class A, i.e., 

ACCURACY (FCA) OVER A SINGLE IMAGE CLASSIFICATION (FSA) THROUGH THE 
REDUCTION OF RANDOM COMMISSION ERRORS. THIS IS ACHIEVED AT THE EXPENSE 
OF A CORRESPONDING MODEST REDUCTION IN USER ACCURACY OF THE DOMINANT 

CLASS B (i.e.. FCn C FSR) 

number of pixels assigned to Class A 

NAI(NA + NB) F C ~  FS A FCB FSB Of these pixels, the fraction that are true Class A pixels will 

0.1 0.9 0.5 0.98 be given by 
0.2 0.95 0.69 0.95 0.97 
0.3 0.97 0.79 0.92 0.96 
0.4 0.98 0.86 0.89 0.93 

of coincident A classification. Similarly, FB will decrease because 
of the increasing importance of Class B commission errors. 
Finally, it can be seen that the ranges of the F values decrease as p 
decreases. An F value can never be less than (1 - p) nor larger 
than p. In the extreme situation of random classification, i.e., p = 
0.5, both FA and FB will always be equal to 0.5 no matter what the 
true class proportions are in the overlap regions. 

Figure 2c illustrates the relationships for FA versus EA for the 
same values of p. It can be seen that EA is restricted by the same 
bounds as FA, again due to the limiting effects of commission 

The impact of compositing can be assessed by comparing 
FCA to the fraction, FSA, of true Class A pixels identified if only 
a single Scene #1 were used, where 

Turning to Class B, the number of pixels assigned to this 
class following compositing will be the total of those pixels 
classed as B in either both or only one of the scenes, i.e., 

Pixels assigned to Class B = MBB + MBA + MAB 

= NB(2p - p2) + NA(l - p2). (24) 

errors. 
Figures 2b and 2d show the scatter plots of FA vs FB and FA vs As with class A, one can compute the corresponding frac- 

EA for the 76 Great Lakes cross-track overlap regions. F~~~ a tions of correctly classified pixels with and without composit- 
comparison with the theoretical plots, the following conclusions i.e., 
are drawn: 

FCB = N~(2p - p2)/(N~(2p - p2) + N A ( ~  - p2)) (25) 
Comparing Figures 2a and 2b, we observe that the observed 
Great Lakes population is consistent with a model of relatively and 
high, consistent scene classification rate, of approximately p = 
0.9. Even with this high producer accuracy, agreement levels 
between classifications can be low ( e0 .5 ) .  These cases arise FSB = NBP/(NBP + N A ( ~  - PI). (26) 
when fractional class coverage is low (e.g., sparse forest cover 
in the south), and result from a preponderance of commis- Table 1 contains a summary of the variations of these frac- 
sion errors. tional parameters as a function of the true fractional proportion 
Comparing Figures 2c and 2d, it can be seen that, while a Small of Class A, NA/(NA + NB), again for the example case of p = 0.9. 
number of overlap regions, about 10 percent of the sample, can The implications of cornpositing can be summarized as 
be explained by values of p below 0.8, most cases of low appar- follows: 
ent classification agreement between scenes (i.e., low values 
of F) are consistent with the effects of dominating commission In the case of Class A, compositing tends to reduce random 
errors in regions where the land is primarily non-forest. commission errors, resulting in a greatly "purified" final Class 
For a region as diverse as the Great Lakes watershed, spatially A population, i.e., an improved user accuracy. This is especially 
variations in land-cover proportions will result in significant important when NA << NB. 
intra-product spatial variations in user classification accuracy, The purification of Class A occurs at the expense of identifying 
even for rudimentary classes, if land cover is derived from a a smaller portion of the true Class A population, i.e., a reduced 
single classification. producer accuracy. The numbers of true Class A pixels found 

through compositing versus single scene classification are NApZ 
and NAP, respectively, or 81 percent versus 90 percent for our 

Cornpositing Model case of p = 0.9. 
In this subsection, the impact of classification compositing In the case of the dominant Class B, the effects are reversed but 
within the two-class model is discussed. In practice, classifica- less dramatic. Cornpositing results in an improved recovery 

tion compositing is based upon confidence comparisons at the rate of true Class B pixels, e.g., 99 percent for p = 0.9 versus 

cluster level derived from multiple overlap regions. Here, 90 percent without compositing. On the other hand, the final 
population of pixels classed as B exhibits a marginally higher 

however, it is dealt with at a simpler level, i.e., the case of two proportion of commission errors. 
scenes with a single overlap region in which further subdivi- 
sion associated with multiple austers per class is ignored. 

In the compositing process, conflicting classifications are 
rationalized by comparing measures of "confidence" of the 
two competing interpretations. For the compositing algorithm 
outlined above, confidence for a class in Scene #1 is defined to 
be proportional to the level of agreement in classification with 
Scene #2, i.e., this confidence for Class A in Scene #1 is propor- 
tional to FA. In the two-class case, the relationship of FA versus 
FB is symmetric about its midpoint (i.e., the point where NA 
equals NB ). AS a result, we need only deal with the case of 

Model Extension 
While the above statistical model dealt with a simple two-class 
case, it can provide insights into more complex cases. 

More Than 'Itvo Classes 

Increasing the number of classes to m potentially leads to n-way 
class interactions where 3 I n 5 m. However, in some practical 
cases, confusion may still exist at the pair-wise level (e.g., grass 
and row crop confusion (Vogelmann eta]., 1998; Zhu et al., 
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2000)). In such cases, the above formulations can be directly 
applied. In situations where a class is confused with a collec- 
tion of classes (e.g., "mixed" forest with pure deciduous, coni- 
fers, and schrubland classes), a first level of understanding can 
be achieved by treating these confusing classes as a single 
"aggregate" class, i.e., an aggregate "Class B." 

Multiple Clusters per Class 

Typically, in cluster-based classification, more than one cluster 
will be assigned the same class label. In our classification com- 
positing methodology, consistency measures (e.g., F values) are 
estimated for each cluster. The above theory can therefore be 
applied at the cluster level as well because the measure of confi- 
dence used in compositing is proportional to the F values devel- 
oped in this section. The cumulative impacts of factors such as 
commission errors can be assessed at the class level by weight- 
ing the effects of constituent clusters by their relative pixel 
populations. 

Application to Mosaic-Based Classification 
As a final point, it should be noted that the methodologies dis- 
cussed here may also be retro-fitted to model the spatial consis- 
tency of classifications based on multi-scene image mosaics. 
ltvo levels of retro-fitting are shown in Figure 3. In the tradi- 
tional mosiac-based classification, individual scenes are first 
radiometrically normalized to a common standard; then the 
scenes are merged into an image mosaic. The mosaic is then 
treated as a single image entity, i.e., it is clustered and the clus- 
ters are labeled. The labeling process in many cases may be 
complex. In the case of the NLCD, the initial 100 clusters of each 
regional mosaic represented only a "first cut" at data parti- 
tioning. Extensive use was made of auxiliary data and addi- 
tional imagery to achieve final a "clustering" and labeling of 
pixels. 

At the first level of modification, consistency checking can 
be accompIished by applying classifying each of the parent 
(radiometrically normalized) scenes using the final cluster 
descriptors and labels derived from the mosaic. Inter-scene 
overlap analyses can then be undertaken, leading to the estima- 
tion of a confidence measure for each cluster and the creation 
of a confidence layer for the original mosaic. At the second 
level, the labeled mosaic is replaced with a fully composited 

Figure 3. Schematic diagram illustrating how conventional 
mosaic-based classification could be modified to incorporate 
classification confidence derived from the analyses of inter- 
scene overlap regions (level 1) and scene compositing 
(level 2). 

product, including a layer of accumulated confidence. This 
level is attractive because it combines the manual efficiency of 
mosaic processing (i.e., only one set of clusters, derived from 
the mosaic, need be labeled), while at the same time exploiting 
the full available image data set, including all overlaps. 

Conclusions 
Large-area land-cover mapping based upon Landsat archival 
imagery involves the integration of derived information from 
scenes that exhibit diverse seasonal and atmospheric condi- 
tions and significant overlap coverage. Traditionally, scenes 
have been combined into image mosaics prior to classification, 
thereby eliminating multiple coverage. It is argued that redun- 
dant coverage has the potential both to improve classification 
performance and to characterize spatial variations in quality of 
the final land-cover product. An alternate land-cover mapping 
approach has been developed which involves classification at 
the scene level followed by the integration of these indepen- 
dently classified entities. Within the context of this approach, 
analyses of the classification consistency in overlap regions can 
be used to identify mislabeled clusters and to model classifica- 
tion confidence at the cluster level. Finally, the same categori- 
zation can be employed to rationalize conflicting scene classi- 
fications and to generate an overlay of comparative classifica- 
tion confidence during the step of integrating scene 
classifications into a final seamless land-cover product. 

This methodology has been employed to generate a synop- 
tic land cover product of the Great Lakes watershed. An analy- 
sis of a simple two-class case (forest vs non-forest land) 
provides a number of useful insights into accuracy issues and 
implications for large-area mapping. 

If the region to be mapped exhibits significant regional varia- 
tions in thematic class proportions, significant intra-product 
variations in user accuracy can occur even if consistent producer 
accuracy is maintained. This has important implications for the 
subsequent use of such products because many, such as change- 
detection analysis, are dependent on high user accuracy. 
Intra-product accuracy variations imply that accuracy modeling 
is desirable at a spatial detail that would be difficult and prohib- 
itively expensive to achieve through conventional ground-truth 
comparison. It is argued that the level of classification agree- 
ment in overlap regions provides an indirect but complementary 
confidence measure that can be assessed on a cluster basis and 
independently applied on each pixel. 
Improvement in user accuracy, particularly for classes of low 
areal coverage, can be achieved by employing multiple classifi- 
cation estimates because random commission errors present in 
each classification are reduced during a compositing process. 
Because parent scene data sets typically include extensive over- 
lap coverage, this should be exploited rather than eliminating 
it through mosaic creation and classification. 
Even if overlap regions are exploited, desired levels of user 
accuracy may not be achievable without resorting to further 
redundancy (e.g., the use of complementary "leaf-off' and "leaf- 
on" image pairs, as in the case of the NLCD). The proposed 
compositing methodology lends itself to this scenario. 
The compositing process includes the generation of a cumula- 
tive confidence layer for each land-cover product. This layer 
provides an important ancillary information source for post- 
processing activities that involve comparison of multiple land- 
cover products, for example, for change detection. Confidence 
can be used to assess the statistical significance of observed 
changes, again at the pixel level. 
There are a number of pros and cons of mosaic- versus scene- 
based classification in the creation of large-area products. 
Because labeling is a labor-intensive process, the mosaic 
approach is attractive because cost and timeliness are usually 
important issues. On the other hand, mosaics have the added 
complexity of temporal variability, which in turn can result in 
added cluster mixing (i.e., more Type c and Type d clusters) 
and class confusion. A detailed performance comparison goes 
beyond the scope of this paper. Finally, while the compositing 
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methodology presented here has been illustrated within the 
context of independent scene-based classification, many of its 
concepts can be fully integrated within the framework of a 
mosaic-based mapping strategy, leading to the creation of addi- 
tional accuracy characterization based on consistency analyses. 

Acknowledgments 
The authors acknowledge the valuable comments provided by 
journal reviewers that have led to numerous improvements in 
the final manuscript. Also, the authors wish to thank Dr. Ying 
Zhang for support in preparing the figures. 

Loveland, T.R., and D.M. Shaw, 1996. Multiresolution Land Character- 
ization: Building Collaborative Partnerships, GAP Analysis: A 
Landscape Approach to Biodiversity Planning, Proceedings of the 
ASPRSIGAP Symposium (J.M. Scott, T. Tear, and E Davis, editors), 
Charlotte, North Carolina (National Biological Service, Moscow, 
Idaho), pp. 83-89. 

Lunetta, R., J.G. Lyon, B. Guindon, and C.D. Elvidge, 1998. North 
American Landscape Characterization Dataset Developments and 
Data Fusion Issues, Photogrammetric Engineering &Remote Sens- 
ing, 64:821-829. 

Sohl, T.L., and J.L. Dwyer, 1998. North American Landscape Character- 
ization Project: The Production of a Continental Scale Three- 
Decade Landsat Data Set, Geocarto International, 13:43-51. 

Brown, D.G., J.-D. Duh, and S.A. Drzyzga, 2000. Estimating &or in  
an Analysis of Forest Fragmentation Change Using North Ameri- 
can Landscape Charcterization (NALC) Data, Remote Sensing of 
Environment, 71:106-117. 

Congalton, R.G., and K. Green, 1999. Assessing the Accuracy of 
Remotely Sensed Data: Principles and Practices, Lewis Publish- 
ers, Boca Raton, Florida, Chapters 5 and 6. 

Dykstra, J.D., M.C. Place, and R.A. Mitchell, 2000. GEOCOVER- 
ORTHO: Creation of a Seamless, Geodetically Accurate, Digital 
Base Map of the Entire Earth's Land Mass Using Landsat Multispec- 
tral Data, Proceedings of the ASPRS 2000 Conference, 22-26 May, 
Washington, D.C., 7 pages. 

Homer, C.G., R.D. Ramsey, T.C. Edwards, and A. Falconer, 1997. Land- 
scape Cover-Type Modeling Using a Multi-Scene Thematic Map- 
per Mosaic, Photogrammetric Engineering & Remote Sensing, 
63:59-67. 

Thomas, I.L., and C.M. Allcock, 1984. Determining the Confidence 
Level for a Classification, Photogrammetric Engineering b Remote 
Sensing, 50:1491-1496. 

Vogelmann, J.E., T. Sohl, and S.M. Howard, 1998. Regional Character- 
ization of Land Cover Using Multiple Sources of Data, Photogram- 
metric Engineering & Remote Sensing, 64:45-57. 

Vogelmann, J.E., S.M. Howard, L. Yang, C.R. Larson, B.K. Wylie, and 
N. Van Driel, 2001. Completion of the 1990s National Land Cover 
Data Set for the Conterminous United States from Landsat The- 
matic Mapper Data and Ancillary Data Sources, Photogrammetric 
Engineering & Remote Sensing, 67:650-662. 

Zhu, Z., L. Yang, S.V. Stehrnan, and R.L. Czaplewski, 2000. Accuracy 
Assessment for the U.S. Geological Survey Regional Land-Cover 
Mapping Program: New York and New Jersey Region, Photogram- 
metric Engineering & Remote Sensing, 66:1425-1435. 

(Received 05 September 2001; accepted 24 October 2001; revised 12 
November 20011 

Forthcoming Articles 
D.H.A. Al-Khudhairy, C. Leemhuis, V. Hoffman, I.M. Shepherd, R. 

Calaon, I. R Thompson, H. Gavin, D. L. Gasca-Tucker, G. Zalidis, 
G. Bilas, and D. Papadimos, Monitoring Wetland Ditch Water 
Levels Using Landsat TM and Ground-Based Measurements. 

A.K. thong,  A Rigorous Technique for Forensic Measurement of 
Surveillance Video Footage. 

A.K. Chongand F. Stratford, Underwater Digital Stereo-Obser- 
vation Technique for Red Hydrocoral Study. 

Arie Croitoru and Yerach Doytsher, Monocular Right-Angle 
Building Hypothesis Generation in Regularized Urban Areas 

by Pose Clustering. 

Olivir Depeir, Isabelle Van den Steen, Patrice Latinne, Philippe Van 
Ham, and El6onore Wolff, Textural and Contextual Land-Cover 

Classification Using Single and Multiple Classifier Systems. 

1.R. Eastman and RM. Laney, Bayesian Soft Classification for 
Sub-pixel Analysis: A Critical Evaluation. 

Jeanne Epstein, Karen Payne, and Elizabeth Kramer, Techniques 
for Mapping Suburban Sprawl. 

Giles M. Foody, The Role of Soft Classification Techniques in the 
Refinement of Estimates of Ground Control Point Location. 

Clive S. Fraser and Harry B. Hanley, Bias Compensation in Ratio- 

nal Functions for IKONOS Satellite Imagery. 

B. Guindon and C.M. Edmones, Large-Area Land-Cover Mapping 
through Scene-Based Classification Compositing. 

lack T. Harvey Population Estimation Models Based on Individual 

TM Pixels. 

Yong Hu and C. Vincent Tao, Updating Solutions of the Rational 

Function Model Using Additional Control Information. 

Carl]. Legleiter, W Andrew Marcus, and Rick L. Lawrence, Ef- 

fects of Sensor Resolution on Mapping In-Stream Habitats. 

Yan Li and ]id-Xiong Peng, Remote Sensing Texture Analysis Us- 

ing Multi-Scale and Multi-Parameter Features. 

Zhilin Li, Xiuxiao Yuan, and Kent WK. Lam, Effects of JPEG Com- 

pression on the Accuracy of Photogrammetric Point Determi- 

nation. 

Hans-Gerd Maas, Methods for Measuring Height and Planimetry 

Discrepancies in Airborne Laserscanner Data. 

]ill Maeder, Sunil Narumalani, Donald C. Rundquist, Richard L. 
Perk, ]ohn Schalles, Kevin Hutchins, and lennifer Keck, Clas- 

sifying and Mapping General Coral-Reef Structure Using 

IKONOS Data. 

Assefa M. Melesse and lonathan D. Jordan, A Comparison of 

Fuzzy ve. Augmented-ISODATA Classification Algorithms for 

Cloud-Shadow Discrimination from Landsat Images. 

Boniface 0. Oindo, Predicting Mammal Species Richness and 

Abundance Using Multitemporal NDVI. 

Asa Persson, Johan Holmgren, and Ulf Sliderman, Detecting and 

Measuring Individual Trees Using an Airborne Laser Scanner. 

Jiann-Yeou Rau and Liang-Chien Chen, True Orthophoto Genera- 

tion of Built-Up Areas Using Multi-View Images. 

596 J u n e  2002 PHOTOGRAMMETRIC ENGINEERING 8 REMOTE SENSING 


