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Abstract 
There is need to map indicators of biodiversity such as species 
richness and abundance of individuals in order to predict 
where species loss is occurring. Species richness and 
abundance have been hypothesized to increase with ecosystem 
productivity. Moreover, productivity of ecosystems varies in 
space and time, and this heterogeneity is also hypothesized 
to influence species richness and abundance of individuals. 
Ecosystem productivity may be esfimated using remotely 
sensed data, and researchers have specifically proposed the 
Advanced Very High Resolution Radiometer-Normalized 
Difference Vegetation Index (AVHRR-NDVI). Interannual average 
NDVI and its variability (standard deviation) were correlated 
with large mammal species richness and abundance of 
individuals at a landscape scale in Kenya. The biodiversity 
indicators associated negatively with interannual average NDVI 
and positively with variability of NDvI. Understanding these 
relationships can help in estimating changes in mammalian 
species richness and abundance in response to global 
climate change. 

lntroductlon 
1 Biodiversity, the totality of genes, species, and ecosystems in a 

region (Stoms and Estes, 1993), is distributed heterogeneously 1 across the Earth. Some regions teem with more biological varia- 
tion (for example, moist tropical forests and coral reefs) 
(Morin, 2000), others support lesser assemblages of biological 1 species (for example, some deserts and polar regions), and 
most fall somewhere in between (Gaston, 2000). Patterns of spe- 
cies richness have been of inherent interest to biogeographers 
and ecologists (Brown, 1988). Hence, many studies have 
attempted to explain the geographical variation in the numbers 
of species that inhabit the Earth (Owen, 1990; Currie, 1991). 
Today, scientific interests in patterns of species richness are 
twofold. First, it reflects increased opportunity provided by 
improvements in available data and analytical tools (Gaston, 
2000), and the use of remote sensing technology (to measure 
vegetation and other environmental variables) (Walker et al., 
1992; Stoms andEstes, 1993; Gaston, 2000). Second, it reflects 
concern over the future of biodiversity, and the resultant need to 
determine its current status, in order to predict its likely 
response to global environmental change (Walker et al., 1992; 
Gaston, 2000). 

Species diversity is an emergent property that results from 
the interaction of the biotic and abiotic elements in the land- 
scape. Consequently, species diversity co-varies with the biotic 
and abiotic factors that regulate the distribution and abun- 
dance of species (Sankaran and McNaughton, 1999). 

A key factor is "ecosystem productivity," defined as the 
amount of energy captured and transformed into living matter 

International Institute for Aerospace Survey and Earth Sci- 
ences (ITC), 7500 AA Enschede, The Netherlands. B.O. Oindo 
is currently at P.O. Box 47146, Nairobi, Kenya 
(booluoch@yahoo.com). 

per unit area (Morin, 2000). Because the abundance of individ- 
uals increases with ecosystem productivity, species diversity 
may also increase with productivity (Diamond, 1988). How- 
ever, this does not always follow logically because there could 
simply be lots of individuals of a few species (Legendre and 
Legendre, 1998). In regional biodiversity studies, productivity 
is usually calculated from weather station records collected at 
scattered (and often biased) sampling points-these points are 
extrapolated in order to characterize productivity over a large 
region (Owen, 1990; Currie, 1991). Such climate-based models 
assume that the vegetation cover is "natural," and ipso facto is 
under the control of climate (Box et al., 1989). However, at a 
landscape scale, vegetation productivity is also influenced by 
non-climatic factors including soil nutrient and structure, 
topography, disturbance, and land use. In view of the fact that 
satellite remote sensing provides synoptic coverage with more 
intensive sampling, the maximum normalized difference vege- 
tation index (NDVI) derived from satellite data should provide 
a more accurate index of actual or current ecosystem productiv- 
ity compared with climate-based models (Box et al., 1989). 

The heterogeneity of an area is strongly (positively) corre- 
lated with the number of species that are found in that particu- 
lar area (Huston, 1994). Factors contributing to the 
environmental heterogeneity are the spatial or temporal varia- 
tion in the physical, chemical, or biological features of the envi- 
ronment that create different conditions (or niches) that 
species can preferentially exploit (Morin, 2000). Hence, species 
diversity increases with niche or resource diversity because 
each species must occupy a distinct niche (Stoms and Estes, 
1993). Because species diversity of any given group of taxa gen- 
erally increases with the grou 's total population size (Dia- 
mond, 1988), it follows that a i! undance of individuals also 
increases with niche or resource diversity. It has been proposed 
that the within-region variability of NDVI values, as defined by 
the standard deviation of NDW, may be used to estimate the het- 
erogeneity of ecosystem productivity (Walker et al., 1992). 

Seasonal variations in climate are responsible for differ- 
ences in plant species growth and establishment patterns, 
leading to changes in species composition and distributions 
(Hobbs, 1990). Thus, yearly variations in vegetation can take 
the form of changes in the spatial distribution of plant growth 
(Tucker et al., 1986). The interannual variation of the maxi- 
mum NDW (per month, per season) can be used to assess 
whether vegetation cover over the years is seasonally changing 
or is constant. For example, calculating the standard deviation 
for a number of years may describe the seasonal variation of veg- 
etation cover for an Advanced Very High Resolution Radiome- 
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ter (AVHRR) NDVI image pixel. Hence, image pixels with a high 
standard deviation within a geographic area would likely con- 
tain high temporal niche differentiation (Begon et al., 1990), 
and should therefore have a positive relationship with species 
richness and number of individuals. Therefore, this paper 
aims to examine the relationships between interannual maxi- 
mum NDVI variables (average and standard deviation) and spe- 
cies richness of large mammals as well as abundance of 
individuals in Kenya. The study was executed at landscape 
scale (10 by 10 km)-a scale appropriate for management deci- 
sions concerning the conservation of species diversity (Bohn- 
ing-Gaese, 1997). 

Methods 
Study Area and Animal Species Data 
Kenya is situated between latitudes 5" 40' north and 4" 4' south 
and between longitudes 33" 50' and 41" 45' east (Figure 1). The 
study area encompasses five rangeland districts of Kenya with 
diverse landforms ranging from highland moors to savanna 
grasslands to coastal plains, and the analyses were carried out 
on individual district data, as well as on the combined 
regional data. 

The mammal species (herbivores with body weight greater 
than 4 kg) data collected from 1982 to 1993 were obtained from 
Department of Resource Surveys and Remote Sensing (DRSRS), 
Ministrv of Environment and Natural Resources, Kenva. The 
aerial s;rveys were conducted twice a year-during h e  wet 
season and dry season-primarily to gather data on species 
abundance and distribution in different seasons. The system- 
atic reconnaissance flight methodology used by DRSRS for 
aerial census of animals is fully described by Norton-Griffiths 
(1978). Statistical analyses to validate DRSRS survey methodol- 
ogy have proved the method to be efficient and the data to be 
reliable (De Leeuw et al., 1998; Ottichilo and Khaemba, 2001). 
Topographic maps at a scale of 1:250,000 were used for flight 
planning, and all transects conform to the Universal Trans- 
verse Mercator (UTM) coordinate system. The aerial surveys 
were carried out along transects oriented in an east-west direc- 
tion and spaced at 5-km intervals. The standard flying height 

Figure 1. Locations of study districts withing Kenya. (a) 
Samburu. (b) Baringo. (c) Laikipia. (d) Narok. (e) Kwale. 

and aircraft speed were 120 m and 190 kmlhr, respectively. 
Tho experienced and well trained observers occupied the rear 
seats of a high wing aircraft (Cessna 185 or Partenevia) and 
counted animals that appeared between two rods attached to 
the wing struts. The field of vision between these rods was cali- 
brated by flying repeatedly across ground markers of known 
spacing (Ottichilo and Sinange, 1985). The number of animals 
falling within the survey strips on either side of the aircraft 
along each 5-km transect segment were counted and recorded 
into tape recorders by the two rear-seat observers. Groups of 
animals more than ten in number were also photographed. 
After every survey the tape-recorded observations were tran- 
scribed to data sheets, which, together with processed photo- 
graphs, were interpreted for herbivore species using a lox 
binocular microscope and overhead projector. Because our 
study was executed at landscape scale, the processed data at a 
5- by 5-km spatial resolution were converted to 10- by 10-km 
grid cells by averaging. The study focused on large mammal 
species that are non-migratory in five rangeland districts (Fig- 
ure 1) with at least four years of survey during the 11-year 
period (1982-1993). The number of large mammal species was 
counted in every grid cell (10 by 10 km) to give a value for total 
species richness. In addition, within the each grid cell of 10 by 
10 km, the average number of individuals was estimated as the 
total number of individuals observed divided by total number 
of survey years. 

NDVI Dekads Data 
The AVHRR-NDVI data were derived from images collected by the 
National Oceanic and Atmospheric Administration (NOAA) 
satellites, and processed by the Global Inventory Monitoring 
and Modeling Studies (GIMMS) at the National Aeronautics and 
Space Administration (NASA). A complete record for Africa 
exists from August 1981 until the present at a 7.6-km resam- 
pled resolution (Los, 1998). NDVI is a measure derived by divid- 
ing the difference between near-infrared and red reflectance 
measurements by their sum (Sellers, 1989): i.e., 

where NIR is the near-infrared measurements and R is the visible 
red measurements. High positive values of N D ~  correspond to 
dense vegetation cover that is actively growing, whereas nega- 
tive values are usually associated with bare soil, snow, clouds, 
or non-vegetated surfaces. Cloud contamination and other 
atmospheric effects, along with some effects of sensor geome- 
try, attenuate the value of NDVI and contribute to a greater error 
in the signal. To minimize the effect of cloud and atmospheric 
contamination, dekad (10 days) temporal composites of N D ~ I  
are developed by choosing the maximum NDVI value for each 
individual pixel location (Holben, 1986). Additionally, differ- 
ences of bare soil reflectance may cause large NDVI variations. 
However, differences in soil reflectance were presumed to 
cause less variation of NDVI values because time series data 
were analyzed for the same pixel area. Moreover, because 
Kenya experiences a bimodal rainfall distribution with peaks 
in April and November, it has two growing seasons. The 
interannual maximum NDVI used in this study generally repre- 
sents NDVI at the height of the growing seasons (Lewis et al., 
1998) when vegetation cover is present and adequate across 
the study area. 

The interannual comparisons of AVHRR-NDVI data incorpo- 
rating data for more than one year is desirable because of the 
substantial variations from year to year that occur in the extent 
and timing of photosynthetic activity (Townshend and Justice, 
1986). Hence, the study aims at measuring ecological variations 
within pixels in such a way that regions affected by occasional 
droughts or erratic changes in the timing and strength of rains 
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Figure 2. Spatial distribution of interannual (1982-1993) maximum NDvi variables in Kenyan rangeland 
districts. (a) Average NDVI image. (b) Standard deviation image. 

could be separated from those where the impact of such anoma- 
lies is slight. Because the total species richness and abundance 
of a region may be constrained by distinct dry or cold seasons 
(Fjeldsi et al., 1997), it is important to quantify the anomalous 
events such as droughts or interannual differences in the timing 
and strength of rains. This was done by aggregating dekads to 
their appropriate months, calculating the standard deviation of 
maximum NDVI for each month over the 11-year period, and then 
averaging the standard deviations for all 12 monthly NDVI val- 
ues over the 11-year period (same for average NDVI). Thus, the 
variability over an 11-year period (1982 to 1993) of monthly 
NDVI values represents temporal variation of productivity. 

The historical image products of Kenya (ADDS, 2000) com- 
prising 396 dekads of maximum NDVI were downloaded from 
website (http://edcsnw4.cr.sgs.gov/bin/staform/a=ndvi/b=ke, 
24 February 2000). These historical NDvI products are statisti- 
cal summaries (i.e., average or maximum NDVI) for the histori- 
cal time period (1982-1993), and, hence, there is no significant 
influence from cloud contamination. Because dekads span 
from the 1st to the loth, the 11th to the 20th, and the 21st to 
month end, a year has 36 dekads (i.e., three dekads multiplied 
by 12 months). Hence, 396 dekads (i.e., 36 dekads multiplied 
by 11 years) correspond to an 11-year time period. This implies 
that each month over an 11-year period has 33 dekads (i.e., 
three dekads multiplied by 11 years). By usingthe Windisp 3.5 
time series data processor (Pfirman et al., 1999), monthly aver- 
age NDVI (vI,) was computed for each of the 1 2  months over the 
11-year period as 

where p is the individual pixel values (i.e., for all 33 dekads 
maximum NDvI images) and n is the number of dekads. Calcu- 
lating the average NDVI for all 12 monthly values produced the 
interannual average NDVI image (Figure 2a). The monthly 
standard deviation of ~ V I  (SDm) was also calculated for each of 
the 12 months over the 11-year period as 

SO. = J& z ( x i  - vil2 (3) 

where n is the number of observations (i.e., 33 dekads), xi is the 

observe value for pixel i, and vi is the average NDVI for individ- 
ual pixels. Calculating the average standard deviation for all 12 
monthly, NDvI values produced the standard deviation of the 
NDVI image (Figure 2b). 

The coordinates of the sample units containing species 
were then geometrically conformed to the same geographic 
coordinate system as the NDVI images. Because the spatial reso- 
lution of the species data (10 by 10 km) was different from the 
NDVI data (7.6 by 7.6 km), the point maps representing species 
data were overlaid on the NDYI raster images. For every grid cell 
of 10 by 10 km of species data overlaid on the interannual aver- 
age NDVI image (Figure 2a) and standard deviation of NDVI 
image (Figure 2b), the mean values of average NDVI as well as 
standard deviation were computed. The interannual maxi- 
mum NDVI variables (viz. average NDVI and standard deviation) 

TABLE 1. COEFFICIENT OF CORRELATION ( r )  BETWEEN VARIABLES: ~NTERANNUAL 

MAXIMUM NDVI VARIABLES (A-AVERAGE NDVI, S-STANDARD DEVIATION) AND 

BlODlVERSlTY lNDlCAT0RS (SPECIES RICHNESS AND NUMBER OF ~NDIVIDUALS) AS 

WELL AS SPECIES RICHNESS AND NUMBER OF INDIVIDUALS (I) IN FIVE DISTRICTS 
OF KENYA. COMBINED REPRESENTS ALL THE FIVE DISTRICTS ANALYZED 

CONCURRENTLY, nS STANDS FOR CORRELATION NOT SIGNIFICANT AT p < 0.05 
CONFIDENCE INTERVALS, WHILE n IS THE NUMBER OF SAMPLE POINTS 

Species Number o f  
District Variable Richness Indiv iduals n 
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Figure 3. Quadratic plots of relations between maximum NDvl variables and biodiversity indicators. (a) 
lnterannual average NDVI versus large mammal species richness. (b) lnterannual average NDVI versus 
number of individuals. (c) Standard deviation of NDvl versus large mammal species richness. (d) Standard 
deviation of NDvl versus number of individuals in districts Samburu, Baringo, Kwale, Laikipia, and Narok 
analyzed concurrently. 

were extracted using lower left corner coordinates of the sam- 
ple unit. Thus, each sample unit finally contained four vari- 
a b l e s - ~ ~ ~ ~  variables (average and standard deviation) and 
biodiversity indicators (number of individuals and species 
richness). Regression lines between the dependent variables 
(biodiversity indicators) and the independent variables (NDVI 
variables) were calculated, as well as the 95 percent confi- 
dence interval. 

Results 
Table 1 shows that the interannual average NDVI has a negative 
correlation with species richness and number of individuals, 
whereas the standard deviation of NDVI showed a positive cor- 
relation with biodiversity indicators. 

Plots of interannual average N D ~  against species richness 
and number of individuals reveal a unimodal pattern (Figures 
3a and 3b) where the number of species and individuals 

increase at intermediate levels of interannual average NDVI but 
decrease at both lower and higher levels of interannual average 
NDvI. In addition, the relationships between the standard devia- 
tion of NDVI and species richness and number of individuals at 
regional scale roughly show a unimodal pattern (Figures 3c 
and 3d), though the data points are relatively more dispersed. 
The relation between species richness and number of individ- 
uals in individual district and combined districts data was also 
investigated. Table 1 shows that species richness is positively 
correlated with the number of individuals, confirming the eco- 
logical rule that species diversity of any higher level taxon gen- 
erally increases with the group's total population size 
(Diamond, 1988). 

Furthermore, Table 1 reveals that maximum NDvI variables 
are more strongly correlated with species richness than with 
the number of individuals. Presumably, in assemblages of bio- 
logical species, there are generally several species represented 
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by a few individuals, and a few species that are very abundant 
(Legendre and Legendre, 1998). This could have contributed to 
the dispersion of data points that most likely reduced the 
strength of association between number of individuals and 
N D ~  variables (Figures 3b and 3d). 

The three-dimensional plots (Figures 4a and 4b) demon- 
strate that, at regional scale, species richness and number of 
individuals are higher at intermediate levels of interannual 
average NDVI and standard deviation of NDW. The species rich- 
ness and number of individuals are high in regions where 
interannual average NDVI is less than 0.55 and the standard 
deviation of NDVI is more than 0.03 (Figures 3a, 3b, 3c, and 3d) 
while, in the Kwale district, Figure 5 illustrates that species 
richness and abundance of individuals are higher in areas 
where interannual average NDVI is less than 0.40 and the stand- 
ard deviation of NDVI is more than 0.03. 

Discussion 
The species diversity of natural communities is hypothesized 
to either increase or decrease monotonically with ecosystem 
productivity or to be unimodally related to productivity, with 
maximum diversity occurring at intermediate levels of pro- 
ductivity (Tilman, 1982; Rosenzweig and Abramsky, 1993). 
Plots of interannual average NDVI, which is an index of ecosys- 
tem productivity, against species richness and number of indi- 
viduals (Figures 3a and 3b) demonstrate a unimodal 
relationship. The species richness and number of individuals 
are highest at the intermediate levels of interannual maximum 
average NDm. Apparently, intermediate levels of average NDvI 
coincide with environments with intermediate levels of produc- 
tivity (Box et al., 1989) that support high production of grass 
resources. In turn, this enables more individual organisms to 
coexist, and thus more species at abundances that make it pos- 
sible for them to maintain viable populations that over time 
allows an increase in species richness and number of individu- 
als (Gaston, 2000). Moreover, at intermediate levels of produc- 
tivity, predators (carnivores) can maintain diversity among 
prey by reducing interspecific competition (Morin, 2000). This 
mechanism breaks down in low- and high-productivity envi- 
ronments, where predators are, respectively, too infrequent to 
thin their prey or so numerous that only the best defended prey 
persist (Morin, 2000). 

Furthermore, natural ecosystems with low productivity 
environments lack niche or resource diversity to allow various 
species to coexist (Stoms and Estes, 1993), encouraging species 
adapted to the more productive niche to dominate the commu- 
nity, thereby decreasing overall species diversity (Kassen et al., 
2000) and, hence, abundance of individuals. In higher produc- 
tivity areas, resource diversity declines due to increased pro- 
duction of woody species, which in turn reduces the primary 
production of grass resources (because of shading by trees) 
(Prins and Olff, 1998). Consequently, the reduced variety of 
resources results in more individuals per few species (Begon et 
al., 1990) rather than more herbivore species. 

Although the unimodal patterns suggest that productivity 
is a primary factor determining species richness and number of 
individuals, productivity could simply be correlated with fac- 
tors that actually generate diversity. One such factor may be 
temporal variation of productivity (Morin, 2000), in this case 
estimated from the standard deviation of NDVI. Presumably, 
variability in maximum N D ~  represents a seasonally changing 
environment where different species may be suited to condi- 
tions at different times of the year. Hence, more numbers of spe- 
cies and individuals might be expected to coexist in a seasonal 
environment than in a completely constant one (Begon et al., 
1990). 

Some investigators suggested that, when the entire range of 
productivity is considered, species richness is highest at inter- 
mediate levels. Tilman (1982) proposed an asymmetrical 

hump-shaped (unimodal) model of the number of plant spe- 
cies that can coexist competitively on a limited resource base. 
Abramsky and Rosenzweig (1984), using rainfall as an index of 
productivity, were consistent with Tilman's (1982) model for 
the relationship between species richness of rodents and pro- 
ductivity in the Isreali arid lands. They showed that species 
richness of rodents reached a peak at moderately low productiv- 
ity, then declined as resources continued to increase. Tilman's 
(1982) model offers a way to reconcile the conflicting findings 
reported in the literature on the relationship between produc- 
tivity and species richness. Both positive and negative 
responses of richness to productivity may be expected among 
different ranges, perhaps taxon specific, of productivity values 
(Owen, 1990). If the hump-shaped model of Tilman (1982) is 
general in scope, then the differing relationship between rich- 
ness and productivity reported in the literature may reflect only 
sampling from different slopes of a fundamental richness-pro- 
ductivity function (Owen, 1990). In the present study where the 
range of interannual average NDW (productivity) represented is 
0.20 to 0.63, the response of large mammal species richness and 
abundance to ecosystem productivity is at least consistent 
with the predictions of Tilman's (1982) model. 

Conclusion 
This study has provided an assessment of multi-temporal 
reflectance data for the purpose of predicting large mammal 
species richness and abundance of individuals. The results 
demonstrate that AVHRR-NDW data can provide temporal quan- 
titative information on vegetation reflectance that can be used 
to estimate relevant environmental factors influencing pat- 
terns of species richness and abundance of individuals. How- 
ever, the predictive power of NDvI variables was relatively 
weak-with a few exceptions (Table 1). In addition, only a rela- 
tively small number of mammals were studied. It is believed 
that using finer pixel resolution imagery and increasing sample 
size of the number of species studied may improve the accu- 
racy of the results. In the future, as finer pixel-resolution satel- 
lite images become available at a frequency similar to NOAA 
AVHRR imagery, the mix of surface types in each pixel will be 
reduced (Box et al., 1989), thereby increasing the accuracy of 
results at the landscape level. Until then, AVHRR-NDVI data 
remain the most useful imagery available for monitoring vegeta- 
tion (Tucker and Sellers, 1986) and predicting mammal species 
richness as well as abundance of individuals at a landscape 
scale in Kenya. 
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