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Abstnct
The potential of multitemporul Inndsat Thematic Mapper (ru)
dota was examined for its use in detecting areas affected by
flood and erosion from a heavy rainfall. The study area is the
Kulekhani watershed (124 km2) Iocated in the cenftal region of
Nepal. Four change-detection techniques were compared for
theit effectiveness including (1) Spectral Image Differencing
(sn), (2) Tasseled Cap Bfightness Image Dffirencing (rcBn), (31
Principal Component Analysis (eca), and (4) Spectral Change
Vector Analysis (scva). sID wos performed on four raw bands
(bands 1, 2, 3, and 7), and altogether seven new images (change
images) were produced.

Visible bands were effective in detecting affected areas. scvA
(using bands 1, 2, and 3) was found to be most accurate for
detecting areas affected by flood and erosion followed by SIn
(band z), cca (using bands 1, 2, and 3), sn (band t), and sn
(band 3). The change image produced from scvA showed overall
and Khat accuracies of BB.3 percent and 75.4 percent,
respectively. The analysis of spatial agreement conducted among
the seven change images, produced from different techniques,
varied ftom 89 percent to 98 percent. The change imoge
produced frcm scuA showed high spatial agreements with
change images produced from PCA, sto (band 3), and sto (band
2). scvA and sID (band 3) showed the spatial ogreement of Bs.1
percent and gB.7 percent in the change and no-change
c ate gorie s, r e s p e ctiv e ly.

lntroduction
High precipitation often causes sediment-related phenomena
such as landslides, debris flows, flash floods, and floods, pos-
ing significant hazards to humans and property. The detection
ofareas associated with such disturbances for a large area is
critical for the assessment of and the response to disturbances
at medium or smaller scale hazard evaluations (Cuny, 1983;
Kienholz et al.,'l,g} i ICIMOD 1991 ; Cablik et aL 1.gg4; Dhakal
et al.,2oooiZlnou et aI.,2ooo). For large areas, mapping of
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affected sites from a field survey is complicated, time consum-
ing, and costly (Aniya et al.,l.g15; Sakai et o1., 1985). Although
conventional aerial photographs remain an important remote
sensing means for accurate mapping of such areas, they have
disadvantages in that a large number of photographs are
required for the analysis (e.g., Brabb, 1991), and mapping is
Iargely dependent on the experience of the analyst (Fookes et
al., tggt: Carrara et al.,'J.992; Van westen 1993; Carrara ef aJ.,
1995;Mantovani ef a1., 1996;Dhakal et a1., 1999), Often the uti-
lization of aerial photographs is limited by the lack of pre-
event and post-event coverage. Although satellite remote sens-
ing has shown potential for hazard/damage assessment (e.g.,
Mckean et a1.,1.991l, Rengers et aL, 1992; Walsh and Butler,
1997), the studies that have used satellite data for hazard/dam-
age assessment of flood and erosion remain limited.

The availability ofrepeated digital satellite data covering
large areas is valuable for quick and efficient mapping. For
example, changing response of vegetation in the red and infra-
red wavelength region (Tucker and Maxwell ,1'976; Tucker,
1979; Anderson and Hanson, 1992; Richardson and Everitt,
1992) have provided the opportunity to monitor green vegeta-
tion and biomass changes in forest ecosystem (e.g., Chavez and
Mackinnon, 1994; Foody and Curran, 1994). Because land
cover exhibits abrupt changes in spectral characteristics due to
disturbance, digital multitemporal satellite data captured
prior to and after heavy rainfall allows the pixel-to-pixel detec-
tion analysis ofaffected areas. Although the basic idea is to
detect changes based on change in brightness value (sv) at a
particular wavelength, different bands or a variety of change-
detection techniques may be applied. Change-detection algo-
rithms are usually influenced by the intended type of change
to be detected (e.g., Nelson, 1983;Howarth and Boasson, 1983;
Virag and Colwell, tgez; Singh, 1989; Peters ef o1., 1993; Jacob-
berger-Jell ison, 1994; Cablik et al.1gg4; Johnson 1994; Leon ef
o1. ,  1998).

The determination of appropriate bands and the change-
detection algorithm that is most suited to solve a particular
problem is therefore important. Studies that have used satellite
data and evaluated change-detection techniques for the assess-
ments of flood and erosion hazards are limited (Michener and
Houhoulis, 1998). The selection ofa single change-detection
technique to address a specific problem is not easy because
land-cover spectral responses to a disturbance may vary mark-
edly by type and intensity of disturbance, ecosystem type, and
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other environmental factors (Collins and Woodcock, 1996; 
Michener and Houhoulis, 1998). Determining the appropriate 
change-detection techniques to solve a particular problem 
requires investigation and examination of different algorithms 
in a variety of ecosystems (Cohen eta]., 1996; Michener and 
Houhoulis, 1998). 

This study compares different change-detection tech- 
niques to detect areas affected by heavy rainfall and compares 
them using a study site in Nepal, where sediment-related disas- 
ters result in an annual average loss of 400 lives and property 
losses amounting to US $17 million (DPTC, 1994). Analyses of 
standard accuracy and spatial agreement are performed to 
compare the new images (hereafter called "change images") 
representing the change between the two dates. Spatial agree- 
ment evaluates the conformity in the classified "change pixels" 
and "no-change pixels" at the same location on different change 
images and comprehensively examines the different tech- 
niques. The objectives of this study were to use multitemporal 
Landsat TM data (1) to examine the potential of TM data in 
detecting areas affected by flood and erosion caused by a heavy 
rainfall, (2) to perform and evaluate different techniques of 
change-detection to map areas affected by flood and erosion, 
and (3) to examine the spatial agreement in the change images 
produced from different change-detection techniques. 

Study Area 
The study area is the Kulekhani watershed located in the Lesser 
Himalayan region of the Himalayan belt in the central region of 
Nepal. The drainage area of 124 km2 lies between 27" 34' N and 
27" 42' N latitude and between 85" 01' E and 85O 12' E longitude, 
with elevation ranging h m  1,500 m to 2,600 m (Figure 1). The 
Lesser Himalayan region in Nepal is highly populated and prone 
to flash floods, floods, debris flows, and landslides. The average 
annual rainfall is about 1600 mm. The area is drained by the 
Palung river, which empties into the Kulekhani reservoir. 

Figure 1. Location of the Kulekhani watershed, Nepal show- 
ing general drainage patterns. 

Agricultural crops occupy 43 percent of the total land area 
(Department of Forest, Nepal, 1991). Forest occupies 44 percent 
of the total land area, in which coniferous, broadleaf, and mixed 
forests occupy 18 percent, 14 percent, and 12 percent, respec- 
tively (Department of Forest, Nepal, 1991). Shrub land, grass- 
land, rock outcrops, and a reservoir cover the remaining 13 
percent of the watershed (Department of Forest, Nepal, 1991). 
The geology of the study area is characterized by sedimentary 
or weakly metamorphosed rocks consisting of slates, limestones, 
meta-sandstones, phyllites, schists, quartzites, and granite 
(Stocklii and Bhattarai, 1981). 

The Kulekhani watershed received an average rainfall of 350 
mm on 19 July 1993, which caused landslides, debris flows, and 
floods in many parts of the watershed. Many villages were 
affected during this erosion disaster, which killed some 72 peo- 
ple and destroyed houses, lands, and infrastructure. The Kulek- 
hani reservoir received 5.9 million m3 of sediments between 
March 1993 and December 1993 (Dhakal, 1995). 

Methods of Analysis 
PreProcesdng of TM Data 
Two Landsat TM images dated 20 December 1990 and 29 Decem- 
ber 1993 were used for the analysis. The 1990 image depicts the 
pre-disturbance condition, and that of 1993 depicts the post-dis- 
turbance condition during which land use had not changed 
appreciably. The study area is one of the most consenred areas 
because of the presence of the only reservoir in Nepal, which 
supports one-third of the total electric power generation of Nepal. 
Hence, land-use changes between 1990 and 1993 due to other 
reasons such as deforestation were unlikely. Similarly, during 
three field visits between July 1993 and March 1994 any other 
notable changes in land use due to reasons other than rainfall 
between July 1993 (event date) and December 1993 (image date) 
were not encountered. 

Thirty-four ground control points ( W s )  digitized from the 
1:25,000-scale topographic map were used to rectify the 20 
December 1990 Landsat 'l%f image to a Universal llansverse Mer- 
cator (UTM) map projection (root-mean-square error: RMSE = 
0.46 pixel114 m). The 1993 image was registered using 50 GBS 

obtained from the rectified 1990 image (RMSE = 0.31 pixel19 m). 
Both RMSEs are within acceptable limits for change-detection 
analysis. RMSE errors less than 0.5 pixel in sparsely vegetated 
areas have been shown to retain very high accuracy (greater than 
97 percent) in the change-detection analysis (Townshend et al., 
1992). The images were resampled to a 30-m pixel size using the 
nearest-neighbor resampling technique to retain radiometric 
integrity (Jensen, 1996). 

Empirical scene normalization techniques described by Eck- 
hardt et al. (1990) were used in this study to minimize or elimi- 
nate the effect of astronomic, atmospheric, and phase angle 
differences between the 1990 and 1993 TM images. The 1993 TM 
image was selected as the reference image to which the 1990 
image was normalized. The pixel clusters of "normalization tar- 
gets" (Jensen et al., 1995) were extracted from three wet (reser- 
voir) and six dry (rock outcropslgrassland) areas in both the 1993 
and the 1990 images. Normalization targets were assumed to be 
the constant reflectors, so any changes in their Bvs were attrib- 
uted to astronomic, atmospheric, and phase angle differences 
(Hall et al., 1991). Regression equations were derived for each 
band (Table 1). The coefficients and intercept of the equation 
were used to obtain the normalized 1990 TM image. Once these 
variations in the multiple-date images were removed, changes in 
Bv could be related to changes in surface conditions. 

Response of Different Bands of landsat TM data 
The differences in the BV between the 1993 and 1990 images for 
some areas affected by heavy rainfall are shown in Figure 2. The 
information on these areas were collected in the field in a similar 
manner to reference data collected for accuracy assessment (to 
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TABLE 1. REGRESSION EQUATIONS USED TO NORMALIZE RADIOMETRIC 
CHARACTERISTICS OF THE 1990 DATA WITH 1993 DATA 

TM Bands Regression Equation Derived RZ 

Band 1 Y = 1.177X + 1.789 0.989 
Band 2 Y = 1.059X + 2.154 0.991 
Band 3 Y = 1.241X + 0.904 0.995 
Band 4 Y = 1.095X + 1.042 0.998 
Band 5 Y = 1.085X + 1.143 0.999 
Band 7 Y = 1.154X - 1.192 0.996 

- Bmadleaf forest (1990) - Landslide (1993) 

- - - - -  Conifemus forest (1990) - Landslide (1993) 

- - - - Grass land (1990) - Landslide (1993) 

- - - - Cultivated land (1990) - Sand deposits (1993) 

C u l t i v a t e d  land (1990) - Cobble deposits (1993) - -Cultivated land (1990) - Boulder deposits (1993) 

Figure 2. Change in brightness value between 1993 (post- 
disturbance) and 1990 (predisturbance) TM bands for some 
areas affected by flood and erosion. Values greater than 
zero indicate increase in brightness value in 1993 image. 
Legend also depicts the land-use/landcover types prior to 
the disturbance. 

be discussed later). The mean values for each band were 
extracted from a 3 by 3 matrix. Bands I, 2,3, and 7 display dis- 
tinct differences in the BV in a variety of affected areas. Bands 4 
and 5 display a mixed response. With this information, four dif- 
ferent change-detection techniques including Spectral Image Dif- 
ferencing (sm), Tasseled Cap Brightness Image Differencing 
(Tam), Principal Component Analysis (PCA), and Spectral 
Change Vector Analysis (SCVA) were employed. Because bands 4 
and 5 were less effective in representing varieties of affected areas 
occurring for all land uses, sm was performed on the four bands 
(band 1: blue, band 2: green, band 3: red, and band 7: mid-*a- 
red). s ~ A  and PCA used three visible bands. Band 7 was 
excluded because a preliminary analysis by visual inspection 
suggested better results with the visible bands. Altogether, seven 
change images were generated using these four techniques. 

Spectral Image Differencing (SID) 
For the pixel located at row i and column j, the difference in the 
brightness value (DBV$) for band k between the two dates was 
computed as (Jensen, 1996) 

1993), t1 is first date (in this case 1990), and Cis a constant 
taken as 127. 

Tasseled Cap Bdghtness lmage Differencing (TCBID) 
The tasseled cap transformation defines a new coordinate sys- 
tem in which characteristics of the remotely sensed data can be 
more readily viewed (Kauth and Thomas 1976; Crist 1983; Crist 
and Cicone, 1984; Crist and Kauth, 1986). Among three func- 
tions of tasseled cap transformation-"brightness," "green- 
ness," and "wetness,"-only the brightness function was 
employed, and was computed as follows (Mather, 1988): 

Brightness = 0.3037 (TMI) + 0.2793 (TM~)  

The image showing change in brightness was produced by 
subtracting the brightness function for 1990 from that of 1993. 

Pdncipal Component Analysis (PCA) 
The PCA in this study was based on merged data sets of bands 1, 
2, and 3 from the images of 1990 and 1993 (Duvernoy and 
Leger, 1980). The basic premise for the PCA with merged data in 
change detection is that one or more of the new PCA bands con- 
tain information that can be directly related to change (Byme et 
al., 1980). Muchoney and Haack (1994) demonstrated that 
multitemporal SPOT spectral information related to hardwood 
defoliation by gypsy moths was confined to a single PCA band. 

The eigenvalues and eigenvectors of the 6 by 6 covariance 
matrix of the six-dimensional merged TM data of 1990 and 
1993 were computed. The first, second, and third principal 
components accounted for 96.2 percent, 2.8 percent, and 0.9 
percent of the variance, respectively. Analysis of the eigenvec- 
tor of the transformed data and visual inspection of six images 
indicated that a third component image best represents the 
areas affected by flood and erosion. Fung and LeDrew (1987) 
have shown that the standardized PCA (using correlation 
matrix) performed better than the unstandardized PCA (using 
covariance matrix). Our study did not show any significant dif- 
ference between them; hence, we considered only the unstan- 
dardized PCA. 

Spectral Change Vector Analysis (SCVA) 
when landundergoes a change due to disturbance, the vector 
describing the direction and magnitude of change from the first 
to the second date is a spectral change vector (Malila, 1980). 
The total change in magnitude per pixel (CM,~,,) between the 
dates through n-dimensional change space was computed as 
(Malila, 1980) 

where BVi,jkjdote21 and BVi,jk(dotel) are the date 1 and date 2 pixel vd- 
ues in band k, respectively. 

Three visible bands (band 1: blue, band 2: green, andband 3: 
red) were selected for S ~ A .  A scale factor of five was used to 
process each TM band. The use of three bands provides eight pos- 
sible types of change vectors (Michalek et al., 1993). Because dif- 
ferent affected areas show increments in bands 1,2, and 3 due to 
disturbances (see Figure 2), only a change of vector, which 
resulted from an increase in BV in bands 1,2, and 3, was of 
interest. 

DBV$ = sv${t,) - sv${tl) + C (1) Thnwiholding and Accuracy Assessment 
Except for the change image produced from SCW, which has a 

where BV is Brightness value, t, is second date (in this case one-tail histogram, the histograms of other change images show 
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nearly normal distributions. Figure 3 shows an example of SID 
(band 1). Values near the mean indicate that they have similar 
spectral values on both dates, and therefore have experienced no 
disturbances. The values that are less than or close to the mean 
(i.e., represented by the left-side tail of the histogram) indicate 
areas where spectral values decreased in 1993 or remained rela- 
tively unchanged. These are the pixels considered unaffected by 
disturbances because they indicate the annual ephemeral 
changes in land cover, which are not of interest to us. The area 
affected by heavy rainfall was represented by pixels belonging to 
the right-side tail of the histogram. 

The following discussion illustrates the method of determin- 
ing threshold boundaries between change and no-change pixels. 
Threshold images were produced by adding the standard devia- 
tiontimes Nto the mean, with Nvalues equal to 0.25,0.5,0.75, 
1.0,1.25,1.5,1.75,2.0,2.25, and 2.5. Threshold images are binary 
images in which a value of 0.0 or 1.0 represents no-change or 
change, respectively. The change images produced at each 
threshold value were compared with the reference data (dis- 
cussed in the following paragraph). Overall accuracy and Khat 
were used for evaluation and determination of the optimal 
threshold (Congalton ef al., 1983; Congalton, 1991). An example 
of a selection of an optimal threshold for SD (band 1) is shown in 
Table 2. 

The 94 reference data (at least 100 m wide) were collected in 
the field using a GPS. Of these, 50 are from the affected areas and 
44 are from the not-affected areas, in which the sizes of the not- 
affected areas were relatively larger. The reference sites were so 
selected that most types of affected areas and not-affected land 
uses were included   he information on location of reference 
sites was then brought into a GIS for overlaying with change 
images and the subsequent accuracy assessment. The reference 
data finally consisted of 1,468 no-change pixels and 1,075 pixels 
from the areas affected by the heavy rainfall. Among 1,075 
change pixels, 388 pixels represented landslide (slope failure) 

17500 - Mean = 128 
St. Dev = 4.42 

S? 15000 - Median = 128 
Q) 
W 
'& 12500 - 

Mode = 128 

c 1.0 standard 
O 10000- L deviation ' 7500 - z 
2 5000 - 

I Difference in the brightness value (BV) 

Figure 3. Smoothed histogram of change image produced 
from Spectral Image Differencing (SID; band 1). Statistics 
representing characteristics of histogram are also shown, 
which were used for thresholding and to determine the opti- 
mal threshold value. Line AB at right-side tail and CD at left- 
side tail show boundaries of 1.0 standard deviation values. 
The area affected by heavy rainfall was represented by pixels 
belonging to the right side of AB because pixels belonging 
to the left side of CD represented the annual ephemeral 
changes in land cover, which were not of interest to u s  (also 
see text and Table 2 for the explanation). 

TABLE 2. THRESHOLD VALUES CORRESPONDING TO VALUE OF THE STANDARD 
DEVIATION TIMES N TO THE MEAN (N  = 0.25 TO 2.5) FOR SID (BAND 1) 

CHANGE IMAGE. OVERALL ACCURACY AND THE KHAT DE~ERMINED THE OPTIMAL 
THRESHOLD FROM THE RANGE 

Spectral Image Differencing (SID; band 1) 

Accuracy 

N Threshold Value Overall Accuracy Khat 

pixels and the remaining pixels represented sediment deposits 
located in the alluvial fan and river terraces. 

The method for determining the optimal threshold for the 
change image produced from S ~ A  is a modification of the 
method for a normally distributed histogram. Initially, a lower 
value of spectral change vector magnitude was chosen and then 
selectively modified to the upper magnitudes until the highest 
accuracy was achieved. 

Results 
Table 3 compares the overall accuracy and Khat in change images 
produced by different change-detection techniques. Among the 
seven change images, S m A  (using bands 1,2, and 3) performed 
best in detecting the affected areas with overall and Khat accura- 
cies of 88.3 percent and 75.4 percent, respectively. Following 
SCVA were sID (band 2) and PCA with overall accuracies of 87.5 
percent and 87.4 percent, respectively, and Khat accuracies of 
73.6 percent and 73.4 percent, respectively. Sm (band 7) showed 
poor accuracy compared to the visible bands. Among the visible 
bands employed for the sD, band 2 showed the highest accuracy 
followed by bands 1 and 3. T a m ,  the weighted average of six TM 
bands (excluding band 6), showedthe least accuracy. Six change 
images (excluding the S ~ A  change image) had the optimal 
threshold at N = 1 at which both overall accuracy and Khat 
were highest. 

The results indicate the effectiveness of visible bands of TM 
data. Accuracies were improved when all visible bands were used 
together in the algorithm. Figure 4 shows a change image gener- 
ated from SCVA at the optima1 threshold value along with subsets 
of post-disturbance aerial photo and TM image (band 2). About 10 
percent of the watershed was detected as affected by flood and 
erosion. 

I 
TABU 3. COMPARISON OF OVERALL ACCURACY (%) AND KHAT (%) FOR DIFFERENT 

CHANGE DETECTION TECHNIQUES AT THE OPTIMAL THRESHOLD VALUE 

Change Detection Method Overall 
and Band(s) Employed Accuracy Khat 

Spectral Image Differencing (SID; band I) 87.0 72.6 
Spectral Image Differencing (SID; band 2) 87.5 73.6 
Spectral Image Differencing (SID; band 3) 86.0 70.5 
Spectral Image Differencing (SID; band 7) 82.9 63.5 
Tasseled Cap Brightness Image Differencing 78.7 54.1 

(TCBID) 
Principle Component Analysis (PCA; 3rd 87.4 73.4 

component) 
Spectral Change Vector Analysis; (SCVA; sector 88.3 75.4 

which showed BV increase in all  bands 1,2 ,  and 3) 
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-- - - 

Figure 4. (A) A Map of Hulekhani watershed (see Figure 1) showing areas 
affected by flood and erosion (black spots) based on the Spectral Change 
Vector Analysis (scv~) (e.g., (a) sand deposits in granite area, (b) sand deposits 
in schist area, (c) cobble deposits in schist area). Subsets of post disturbance 
(6) 1994 aerial photograph, and (C) December 1993 Landsat TM (Band 2) are 
also shown. 

Evaluation of Spatial Agreement between Change Images 
Accuracy assessment is a common method to evaluate change 
images; however, it does not exactly explain how two change 
images produced from different techniques differ from each 
other. Spatial agreements between change images were exam- 
ined to comprehensively evaluate change images produced from 
different techniques. 

To evaluate spatial agreements between change images, two 
of the seven change images were overlaid in turn and all the pix- 
els (i.e., "change" and "no-change"), classified into the same cate- 
gory (agreed pixels), were counted. The "overall spatial 
agreement" was then calculated by taking the proportion of 
agreed pixels to the total number of pixels, in a similar manner to 
the evaluation of overall accuracy fiom the error matrix (e.g., Con- 
galton et a]., 1983; Congalton, 1991). 

The "overall spatial agreement" in the change images varied 
from 89 percent to 98 percent (Table 4). The agreement was high 
among the change images obtained by sm (band 3), PCA, and 
SCVA. The "overall spatial agreements" were usually higher in all 
cases due to the influence of a large number of "no-change" pixels 
(about 90 percent) compared to "change pixels" (about 10 per- 
cent). Nevertheless, the "overall spatial agreement" is a good 
indicator of the similarity between the change images because it 
reveals the subtle differences between them. 

The "overall spatial agreement" measures the agreement of 
the entire change image. Often, it might be important to compute 
agreement only among the "change" category. For this reason, the 
spatial agreement was also computed for the change category. 
Because the change image produced fiom SCVA was the most 
accurate change image, the agreement in the change category for 
the other six change images was compared with the change image 
of SCVA. After overlaying six change images with the change 

image of SCVA, the "spatial agreement in the change category" 
was calculated as the proportion of "agreed change pixels" to the 
"total change pixels" (Table 5). For comparison, "spatial agree- 
ment in the no-change category" (the proportion of "agreed no- 
change pixels" to the "total no-change pixels") was also calcu- 
lated in a similar manner and shown in Table 5. Table 5 shows 
highest agreement between SCVA and sm (band 3) followed by 
SCVA and PCA, and SCVA and sm (band 2). 

Discussion and Conclusions 
Among the individual bands of 'I'M data used, the visible bands 
were effective in detecting flood and erosion areas. In sm, band 2 
shows the highest accuracy (overall accuracy 87.5 percent and 
Khat 73.6 percent) followed by band 1 (overall accuracy 87.0 per- 
cent and Khat 72.6 percent) and band 3 (overdl accuracy 86.0 
percent and Khat 70.5 percent). A study conducted by Ridd and 
Liu (1998) showed that band 3 and band 2 were effective in 
detecting changes at a construction sites and farmlands in an 
urban environment. Miller et d. (1983) and Pate1 et d. (1985) 
found muddy water showing higher reflectance for band 3 (red). 
Yamagata and Akiyama (1988) also used band 3 to estimate 
paddy damage caused by flooding using multitemporal Landsat 
data. The subtle difference in this study was encountered because 
the type and size of deposits varied in different affected areas. It 
is important to note that the change image produced from XVA, 
which showed the highest accuracy among different change- 
detection techniques, had higher spatial agreement with the 
change image produced from sm (band 3) than the change image 
produced from sm (band 2) (see Tables 4 and 5 1. 

Among the different change-detection techniques tested, 
SCVA (using bands I, 2, and 3) perfol~ned best with overall accu- 
racy of 88.3 percent and Khat of 75.4 percent. PCA and sm (bands 

TABLE 4. COMPARISON OF OVERALL SPATIAL AGREEMENT (%) BETWEEN SEVEN CHANGE IMAGES PRODUCED FROM DIFFERENT CHANGE-DETECTION TECHNIQUES 

SID (Band 1) SID (Band 2) SID (Band 3) SID (Band 7) TCBID PCA SCVA 
-- - - 

SID (Band 1) 100 
SID (Band 2) 93.0 100 
SID (Band 3) 92.5 95.0 
SID (Band 7) 89.4 90.8 
TCBID 91.5 93.2 
PCA 94.8 92.8 
SCVA 95.2 96.0 

SID: Spectral Image Differencing; TCBID: Tasseled Cap Brightness Image Differencing; PCA: Principle Component Analysis ( 3 1 ~  component); 
SCVA: Spectral Change Vector Analysis (vector which showed BV increase in all bands 1, 2, and 3). 
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TABLE 5. SPATIAL AGREEMENT OF CHANGE AND ~ ~ & H A N G E  CATEGORY (%) OF 
SIX CHANGE IMAGES COMPARED AGAINST THAT OF CHANGE IMAGE PRODUCED 

FROM SPECTRAL CHANGE VECTOR ANALYSIS (SCVA) 

Change detection method Change category No-change category 

SID (Band 1) 72.4 98.2 
SID  and 2) 76.8 98.5 
SID (Band 3) 88.1 98.7 
SID (Band 7) 59.0 95.2 
TCBID 68.9 96.9 
PCA 85.2 99.8 

SID: Spectral Image Differencing; TCBID: Tasseled Cap lkansformation 
Brightness Image Differencing; PCA: Principle Component Analysis 
(3d component). 

1,2, and 3) also showed hi& accuracies. SID (band 7) and T a m  
did not perform well. ~ h e c h a n ~ e  image produced from SCVA 
showed overall s~at ial  ameements of 98.1.97.5. and 96.0 Dercent 
with the change &nages iroduced from P ~ A ,  SG (band 3);and sD 
(band 2), respectively. SCVA and SID (band 3) showed the spatial 
agreement of 88.1 percent and 98.7 percent with the change and 
no-change categories, respectively. The rock types of sediments 
and the type of land cover influenced the change-detection tech- 
niques. For example, SD (band 7) and T-ID failed to satisfacto- 
rily detect the cobble-type debris flow deposits on cultivated land 
around the Phedi River in schists and quartzites areas; however, 
both techniques detected sand deposits on river terraces in gra- 
nitic areas (see Figures 1 and 4). 

SID and TCBID applied in this study were image differencing. 
Image differencing is a relatively simple and easy technique. 
Despite its simplicity, sID has been found effective in many stud- 
ies (e.g., Ridd and Liew, 1998; Macleod and Congalton, 1998; 
Muchoney and Haack, 1994). The other two techniques-SCVA 
and PU-employ many bands together in order to extract 
changes. These methods have also been found useful in different 
change-detection studies (e.g., Michalek et al., 1993; Lambin and 
Strahler, 1994a; Lambin and Strahler, 1994b; Muchoney and 
Haack, 1994; Yamagata and Akiyama, 1988; Fung and LeDrew, 
1987). Due to hydrologic processes, flood and erosion hazard 
assessment related studies need to be carried out in a watershed 
usually consisting of different land uses. It is important that 
change-detection techniques should address the changes 
occurring in a variety of land uses. Change-detection techniques 
may be influenced by types of erosion and sedimentation condi- 
tions in different land uses. 

The application of multitemporal Landsat TM data to detect 
areas affected by floods and erosion in a watershed consisting of 
different land uses showed that visible bands were effective in 
detecting affected areas. Spectral Change Vector Analysis (SCVA; 
using bands 1,2, and 3) performed the best followed by Spectral 
Image Differencing (sm; band 2) and Principal Component Anal- 
ysis (PCA; using bands 1,2, and 3). Because the detection of areas 
affected by flood and erosion in a large area based on fieldwork 
is often a difficult task, the results of this study enhance the 
understanding of the practical applicability of automated change 
detection using multitemporal satellite data in overcoming such 
difficulties. 
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