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Abstract 
We developed a CA-based urban growth simulation model to 
emulate the city growth before 1997 and simulate possible 
change scenarios after that. An adaptive Monte-Carlo method 
was used to automate the calibration of factor weights used 
in  the CA transitional rules. We used one scene of Landsat MSS 
imageryfiom 1975 and three scenes of TM imageryfiom 1984, 
1991, and 1997 to classify the land-use patterns, and we used 
the results to calibrate the CA model. We applied the model to 
assess the general urban development plan entitled "disperse 
polycentric urban development plan" of Beijing City and 
found that the plan failed to meet its objectives. 

Introduction 
The Beijing Municipal Government initiated a general develop- 
ment plan entitled "dispersed polycentric urban development 
plan" in 1958, and subsequently revised it in 1983 and 1993. 
The general plan was to construct one central city and some 
scattered satellite cities around it. A wide range of greenbelt 
including truck farms, orchards, and forest lands would be set 
up between the central city and satellite cities (Zhou et al., 
2000). This general plan was meant to play a role in controlling 
extensive urban expansion of the central city, thus controlling 
such environmental problems as traffic congestion, air pollu- 
tion, the heat island effect, and so on. However, during the past 
two decades, extensive urbanization took place due primarily 
to economic development and population growth. Because of 
an underestimation of this growth, and a lack of policy and 
measures to effectively implement the plan, most land-use 
changes did not follow the plan. Therefore, emulating the 
city's growth in the past and simulating possible change scenar- 
ios for the future would be helpful to the evaluation of the 
effects for the development plan and for its future revision. 

Most existing urban growth and development models have 
their origin in urban economics and planning (e.g., Brotchie et 
a]., 1980, pp. 10-50; Zipf, 1949, pp. 40-90; Wilson, 1970; 
Makse et al., 1995). For example, von Thunen (1966) proposed 
a model to predict the spatial distribution of land use at a very 
aggregated level. Zipf's rank-size rule and Christaller's central 
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place theory can model or predict the size and economic distri- 
bution among urban systems (Zipf, 1949, pp. 40-90). Neo- 
classic economics with a concept of "friction of space" adapted 
from physics forms the basis of many later urban models, 
including Alonso's urban land market theory (Alonso, 1964). 
These economic models usually employ econometric regres- 
sion, difference, or differential equations to describe the inter- 
actions of many urban growth factors. Traditional urban 
models have their limitations, especially in their spatial and 
temporal aspects. Econometric regression models often view a 
city as an abstract geometric shape of zones and sectors, if they 
employ any spatial reference at all. They are either a purely 
static description of the city or an aggregate prediction relying 
on a general equilibrium assumption. The spatial aggregate 
nature of the prediction results and the dependence on the gen- 
eral equilibrium assumption limit their usefulness in planning 
and decision making. Difference or differential equation based 
models are dynamic and can generate relatively complex 
results, both temporally and spatially. However, solutions that 
are better than a very crude spatial resolution are hard to 
achieve computationally. In general, several dozens of regions 
are the maximum number that can be handled (White and 
Engelen, 1993). 

Recently there has been an increasing trend in applying 
cellular automata (CA) models in urban growth simulations. 
Such models view cities as complex systems based on the prin- 
ciple of self-organization. As has been argued by many authors, 
CA models can avoid many shortcomings of traditional models 
(Clarke et al., 1997; Batty et al., 1999). 

Cell, state, neighborhood, and the transition rule are the 
primary components in CA models. The space consists of a ZD 
array of cells of the same size. The state variation of a cell 
depends on its previous state and those of its neighbors. The 
change of state for each cell is controlled by a set of transitional 
rules (functions) that are assessed at each time step. Transi- 
tional functions can be either deterministic or stochastic (Wol- 
fram, 1984). When applied to urban growth problems, a cell 
corresponds to a pixel in a land-use image, and its states repre- 
sent different land-use types (for both urban land and non- 
urban land). Time is in discrete steps. The urban growing proc- 
ess thus can be represented by a cell state updating process. 

The key elements that define a strict CA as originally used 
in physics are that the underlying plane is homogeneous; that 
cells don't have intrinsic properties; that rules must be uniform, 
and they must apply to every cell, state, and neighborhood; 
and that every change in state must be local, which in turn 
implies that there is no action-at-a-distance effect. When 
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applied to land-use modeling, CA models are often relaxed to 
adapt to real problems at hand. Common relaxations include 
adopting heterogeneous underlying planes; extending the 
immediate neighborhood definition from a Moore or Neumann 
neighborhood to a larger extent; incorporating action-at-a-dis- 
tance effects, or broad-scale factors, etc. 

The primarily dynamics generating mechanism of CA- 
based urban growth models is based on local interactions. It 
has a strong analogy with how cities evolve in the real world- 
numerous individuals make decisions about the use of their 
own piece of land, and the overall landscape pattern is an aggre- 
gate outcome of these individual locally based decisions. In 
the planning field, there is a general cry for "bottom-up" mod- 
els and CA models. CA models seem to be the perfect tool to 
reflect this concern (Batty et al., 1997). Their easy integration 
with GIS and remote sensing algorithms also facilitates their 
implementation. The success of CA models in simulating realis- 
tic urban growth has been demonstrated by many authors (e.g., 
Couclelis, 1985; Phipps; 1989; White and Engelen, 1993; Batty 
and Xie, 1994; Couclelis, 1997; Batty and Xie, 1997, Clarke et 
al., 1997; White et al., 1997; Wu and Webster, 1998; Wu, 1998; 
Batty et al., 1999; White and Engelen, 2000; Li and Yeh, 2000; 
Wang and Zhang, 2001). 

Cellular automatic (CA) models are being adapted to reflect 
realistic economic and social theories. Economic, geographic, 
and planning theories and models can serve as guidelines for 
the construction of CA models. For instance, traditional geo- 
graphical models such as spatial interaction models are used to 
control the growth rate for different regions in a CA model (e.g., 
White and Engelen, 2000). On the other hand, the local interac- 
tion concept and the dynamic feature of c A  models offer a way 
to augment traditional urban models and theories. With the 
help of CA models, classical urban economic and planning 
models can be re-phrased and made more explicit both spa- 
tially and temporally. 

We developed a modified CA model to investigate the 
urban growth history of Beijing from 1975 to 1997. In addition 
to involving the common approaches of relaxing the strict CA 
model formalities, we focused on calibrating the factor weights 
used in the transitional function, especially between local 
effect factors and broad-scale effect factors. Differing from tra- 
ditional approaches relying on the modeler's experience, we 
developed an iterative procedure based on the goodness-of-fit 
between the model prediction and the real data. In the rest of 
this paper we describe the model calibration process with 
land-use data derived from remotely sensed data and the 
assessment of the general urban plan for the near future with the 
modeled urban growth results for Beijing. 

Study Area and Data 
Our study area (115.8347"E to 116.9859"E and 39.5977"N to 
40.3832"N) covers 4499.6 krn2, approximately 27 percent of 
Beijing City (Figure 1). The total population in this area is 
approximately 9.19 million. Although covering a small por- 
tion of Beijing, it provides the most representative "profile" of 
this city in terms of development levels and land-use diversity. 
The study area includes all land-use types of Beijing and nine 
of its ten satellite cities. 

For an area of this size, aerial photographs would have 
been suitable for model development to investigate the urban 
growth history. However, complete coverage of aerial photo- 
graphs was not available to us. Therefore, the urban growth 
history was recovered from a land-uselland-cover classifica- 
tion mode using one scene of Landsat Multispectral Scanner 
(MSS) data (06 May 1975) and three scenes of Landsat Thematic 
Mapper (TM) data (02 October 1984,06 May 1991, and 16 May 
19971, which cover the whole study area with relatively high 
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Figure 1. Study area and location. 

quality. Transportation networks cannot be accurately identi- 
fied from satellite images at a 30- to 80-m resolution. This led us 
to concentrate only on general land-cover and land-use types. 

Because the spatial resolution and spectral bands of MsS 
data in 1975 are different from TM data, and the TM data in 1984 
have obvious seasonal differences from other data, the images 
were carefully registered to a 1:100,000-scale topographic map 
using more than 30 ground control points. The root-mean- 
squared errors were less than 1 pixel. The images were classi- 
fied separately using a supervised maximum-likelihood classi- 
fication. The resultant land-use maps consist of six land-use/ 
land-cover types: urban land, water (including fish pounds), 
cultivated area (mainly including irrigable land, truck (vegeta- 
ble] farms, and paddy fields), orchard land, shrub land, and for- 
est land. After post-processing and verification with ground 
survey data, the Kappa coefficients of classification were 0.71, 
0.76,0.80, and 0.82 for 1975,1984,1991, and 1997, respec- 
tively (Plate 1). The lower land-use mapping accuracy for 1975 
was partly due to the lack of spectral details in the MSS data 
while the relatively low accuracy for 1984 was partly caused by 
the greater amount of shade and shadow during the fall season. 
It appears to us that for six land classes a kappa coefficient 
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Plate 1. Land-use/landcover maps for 1975, 1984, 1991, 
and 1997 classified from remotely sensed data. 

exceeding 0.7 is acceptable for the purpose of this analysis. 
Other ancillary data included a topographic map at a scale 

of 1:100,000; maps of transportation networks for the early 
1980s, early 1990s, and 1996; a DEM; and a map of the land pro- 
tection plan in  which the flood plain areas of rivers, existing 
green areas within the central city area, reservoirs, and lakes are 
prohibited from urban development (Zhou and Mong, 2000, 
pp. 127-129,237). Considering the differences in  spatial reso- 
lution of the MSs data, TM data, and ancillary data, we resam- 
pled all data layers to a cell size of 150 m by 150 musing the 
nearest-neighbor method. This further reduced the image mis- 
registration effect. 

CA-Based Urban Growth Model 
Model Framework 
The transitional function is the core of CA models. There are 
two groups of factors i n  the transitional function. The first 
group includes local factors, such as interactions between adja- 
cent land uses. The second group includes broad-scale factors 
such as regional interactions based on transportation networks. 
In transitional function calibration, there is a need for evaluat- 
ing their relative importance. In this study, we consider calibra- 
tion of weights as an inverse problem, in which the result of 
urban growth is known and some parameters (weights) influ- 
encing the result need to be determined. We used an adaptive 
Monte Carlo method to solve this inverse problem (Ichimura 
and Wakimoto, 1974). We made the following modifications to 
the formal CA framework to reflect the realistic situation (Fig- 
ure 2): 

(1) External Land Demand Control. Urban growth takes place 
when demands for land development arise, which is a func- 
tion of economic and population factors. General a models 
depend solely on the states of a cell and its neighborhood to 
allocate land demands into the space. Because economic and 

population factors were not included in the CA model, urban 
land demands need to be predicted elsewhere. A function of 
land demand can be built based on the economy and popula- 
tion data. Sometimes only the total urban land demand for a 
certain period is available, but the CA-based model needs 
urban land demand in each year as input. Therefore, we 
selected the sustainable land development model (Yeh and Li, 
1998) to derive the optimal allocation of urban land demand to 
each year based on Tietenberg equity (netenberg, 1992). 

(2) Transition Potential from Non-Urban Land to Urban Land 
Based on Land Suitability and Neighborhood Effect [Urban 
Agglomerative Effeco. Because urban growth may depend on 
its inherent suitability for urban land use determined by land 
location, traffic conditions and physical conditions, oui model 
auantified land suitabilitv and neiehborhood effects and incor- 
porated them into a transition pot&tial through a weighted lin- 
ear combination as follows (White et al., 1997; Wu, 1998a): 

where Piis the transition potential to an urbanland use for a 
m-1 

cell ijat time t. 2: wk x skis the inherent suitability of the cell 
k-1 

for urban use, in which s k  is a standardized suitable score 
[0,100] of factor k (I,.  . . , m - 1) and wkis its weight. Nrepre- 
sents the neighborhood effect and wm is its weight. The 
weights (wl, w2, . . . , w,-,, w,), reflecting different contribu- 
tions of the above factors, were determinedusing an adaptive 
Monte-Carlo method based on realistic urban growth history. 
C,is a binary variable representing imperative constraints to 
urban growth extracted from the land protection plan. If C, = 0, 
the cell may be a river, lake, or protected land that cannot be 
used as urban land. A is a scalar that standardizes transition 
potential into the range of [0,100]. 

(3) Definition of Neighborhood Effect Was Relaxed to Involve the 
More Distant Influence ofNeighbors. Agglomeration in urban 
expansion resdts from ihe binefit of conveniences for 
exchange of material, information, and money, and cost saving 
for infrastructure construction when urban land is agglomer- 
ated. Theoretically, the magnitude of the agglomerat60n effect 
largely depends on the difference between the benefits and 
increased cost caused bv urban land a~lomeration. The 
agglomeration effect of Gban e ~ ~ a n s i o ~ ~ o u l d  be enhanced by 
the neiehborhood effect in a a-based model. As a relaxed def- 
inition%f neighborhood in this study, Moore neighborhood 
was expanded from eight cells in eight directions to 224 cells 
with aradius of seven cells (Li and Yeh, 2000). The neighbor- 
hood effect Nis defined bv 

' 1  
N =  - X Ii+n.pm 

n=l ,m=l  d*+n,,+m 
(2) 

where d,,,,j,m is the distance from a neighbor cell (m, n) to the 
center cell (i, j )  in cellunits as I,$, 2,. . . Its reciprocal reflects 
the distance-decay effect. As a binary variable, Z,+n,j=i,, repre- 
sents the state of a neighborhood cell (1 for urban and 0 other- 
wise). Based on the above definition, it is easy to find that the 
neighborhood effect N depends on the number of urban cells 
within a neighborhood and their distances to the center cell. 

According to Figure 2 and the above considerations, simu- 
lation of urban growth is a process of allocating urban land 
demands to potential cells based on transition potentials. This 
process was divided into two parts in our model: (1) calibrating 
weights in the transition potential formula using a n  adaptive 
Monte Carlo method based on historical data of urban growth, 
and (2) simulating urban growth in  the future based on the cali- 
brated a - b a s e d  model and land demand prediction. 

Callbration of Weights In TranslUon Potential Using Adaptive Monte-Cado Method 
The goal here is to estimate the weights so that the simulation 
result i s  as close to the realistic urban growth as possible. By 
doing so, we expect that the model would allow u s  to identlfy 
the different contributions (weights) of various driving factors 
in  the urban growth process. We define the weights to be posi- 
tive integers and normalize them to sum to 100. The inverse 
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problem then becomes a constrained maximization (minimiza- 
tion) problem as follows: 

Constrained Condition: 2 wk = 100 
k=1 

Land use msps in 
1975,1984,1991, 

1997 classifled h m  
Remote sensed data 

Neighborhcal 
effect 

Objective function: Max F(w,, w2, ..., w,) 

where wk > 0, and F is a fitness function between simulation 
results and the actual situation. Our objective is to find optimal 
weights so that a fitness index reaches its maximum. This 
inverse problem can be solved using an adaptive Monte Carlo 
method (Ichimura and Wakimoto, 1974; Carmone et al., 1997). 
Compared to other models in which weights of the driving fac- 
tors are determined beforehand based on the experience of 
modelers or experts, the adaptive Monte-Carlo method is more 
objective and can avoid the difficulties in finding experts. The 
weight of a driving factor calibrated from urban growth history 
reflects its contribution to urban growth. "What-if" scenarios in 
the future can be modeled when the same role of each driving 
factor is played. The procedure of weight determination is 
described as follows: 

- 
Land snitabU1ty hebn 
Distance to central city 
Dkstance to expressway 

Distance to airport 
Distance to high way 

Distance to ringed mad 
Distance to railway 

Distance to satellite cities 
and sub-center cities 

Slope 

(1) A constrained random number generator is used to generate 
the weights (Miyatake and Wakimoto, 1978, pp, 31, 32, 60). 
First, the random numbers (L,, L2, . . . , Lm-,) are generated 
from a uniform distribution between 1 and 100 + m - 1. 

I-. 

C o n s t r ~ I ~ d  Facton 

Pmtected land 

F l d e d  land 

Lake and reservoirs 

Then L1, 4, . . . , Lm-, are sorted in an ascending order (L[,, 
< Lt2,, . . . , LIm-,)). The weights are 

(2) Based on these weights, the transition potential of each cell 
is calculated using Equation 1. The total land demand during 
a certain period (the difference of urban land areas between 
the beginning and ending years) is then allocated in the order 
of the ranked transition potentials, starting with the highest. 
Then a fitness index K is calculated to assess the simulation 
performance based on a cell-by-cell comparison between the 
simulation results and the land-use map of the ending year 
that is derived fiom remotely sensed data. Because the simula- 
tion results and the land-use maps were georeferenced, the 
cell-by-cell comparison included location information of the 
pixels. During each simulation we used the changes of urban 
areas between the starting and ending years determined from 
remotely sensed data as the total newly urbanized areas. 
Therefore, the ratio between the number of simulated urban 
pixels, C, and the total number of newly urbanized pixels 
during the period of simulation, D, is sufficient to be used as 
a fitness index: i.e., 

1 I 

4 
Factor stan-zation 

Weight generation by adaptive 
Monte Carlo method - + 

Transition potential calculation 

Iteration 

Dmand 
Land demand allocation 

- 
t 

Comparison 
Fitness maximized? 

1066 October  2002 

1 

I 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 

Total land demand 
prediction 

Land demand allcation 
in each year by sustainable 
land development model 

Figure 2. Framework of cprbased urban growth model. 



The above steps were iterated many times to fit the real 
data (land-use maps), and the weights corresponding to the 
highest K were chosen as the optimal weights, which reflect 
the contributions of driving factors during this period. They 
were then used for new urban growth simulation. According 
to Miyatake and Wakimoto (1978, pp. 31, 32,60), when the 
iteration times reach 500, the probability for the Monte Carlo 
simulation approaching + 1 percent of the true maximum is 
approximately 0.995. Therefore, 500 was selected as the mini- 
mal number of iteration times, ensuring that the Monte-Carlo 
method can obtain reliable weights in this study. 

Land Demand Pfedlctlon for Future Urban Growth Simulation 
In order to simulate future urban growth with the calibrated CA- 
based model, the total land demand on a yearly basis is needed. 
Assuming that Beijing will adopt a sustainable land policy, the 
total urban land demand can be estimated as a tradeoff between 
economic growth and environment protection under the con- 
trol of available land resources. The optimal allocation of land 
demand to each year can be obtained using the sustainable land 
development model. 

According to Tietenberg (1992), land resource can be 
treated as a depletable, non-recyclable resource. Its demand 
and supply are influenced by price. Thus, the optimal alloca- 
tion of land resources is to maximize the net benefit. The maxi- 
mum net benefit can be obtained when the marginal benefit 
function is equal to the marginal cost function. Because the 
marginal benefit falls as land consumption qt or land consump- 
tion per capita qtlPta increases (P, is additional population in 
year t) (Yeh and Li, 1998), the marginal benefit function (MB) in 
year t can be given by assuming the land demand curve is lin- 
ear and stable over time (Tietenberg, 1992): i.e., 

where a is the maximum value of the marginal benefit in theory 
and b is the slope of the marginal benefit curve. The total bene- 
fit TB for a period is the integral of Equation 7, and is givenby 
Equation 8 when the additional population Pt is fixed: i.e., 

The marginal cost for a period is further assumed to be a con- 
stant c. The total cost TC is 

Because the optimal allocation of land demand Q over n years 
is to maximize the net benefit that equals the total benefit 
minus total cost, it should satisfy the following maximization 
condition: 

max 2 (aqt - bq?12Pta - cqt)/(l + rIt-l 
Qt t=1 

+ e qt) 
t=l  

(10) 

where Q is the total land demand; qt is allocated land demand 
in year t; cis the marginal cost constant, which is less than a; r 
is interest rate; and A is a constant to be solved for. Maximiza- 
tion can be achieved by solving the following equations: 

where Pta is the projected additional population in year t, which 
can be estimated with a logistic model based on historical data. 
The solution of Equations 11 and 12 yields a stream of qt, which 
is the optimal aIlocation of total land demand in each year. 
After the total urban land demand and optimal allocation are 
achieved, urban growth in the future can be simulated using 
the c~-based model. 

Urban Growth Simulation During 1975-1997 
Simulation of the urban growth history can improve our under- 
standing of the urban growth mechanism in the past. The 
changes of land use in Beijing were influenced by a large num- 
ber of factors. Population and economic growth driven by the 
development of the tertiary industry and infrastructure con- 
struction propelled urbanization as a whole (Gu, 1999; Sun, 
1992), while such factors as traffic condition, distance to cen- 
tral city, slope, and so on determined the spatial distribution of 
urban growth. In the case of Beijing, the most important nine 
factors associated with land suitability and neighborhood 
effect were selected and incorporated in the calculation of tran- 
sition potential. These factors were distance to central city, dis- 
tance to satellite cities and sub-center cities, distance to 
expressway, distance to airport, distance to highway, distance 
to ring road, distance to railway, slope, and neighborhood 
effect. Because the traffic system and neighborhood effect 
changes each year, factors related to the traffic system and 
neighborhood effect were calculated for each year by taking 
into account the newly built traffic lines and newly urbanized 
pixels. Because the above nine factors were measured in differ- 
ent units, a standardization method was used to translate them 
into a normalized scale (0 to 100). Fuzzy membership func- 
tions were adopted to accomplish the standardization (Figure 
3). For each factor, the form of and coefficients in the member- 
ship function were determined based on buffer analysis and 
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dardize the driving factors. 

J 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING October 2002 1067 



Figure 4. Standardization of the factor of distance to expressway. (a) Buffer regions from 
expressway. (b) Fuzzy membership function for standardization. 

regression analysis. For example, the distance-to-expressway 
factor was standardized in the following steps (Figure 4): 

(1) The nearest distance to expressway was calculated for each 
pixel in a GIS. Then, buffer analysis was carried out with the 
distances from 1 to 10 km. The nine buffer regions from 
expressway were extracted as 0 to 1 km, 1 to 2 km, . . . , 9 to 
10 km. 

(2) In each buffer region, the change probability was calculated, 
which was defined as the percentage of the number of urban- 
ized pixels to the total number of pixels in the region. Here 
the urbanized pixels were those pixels that changed from 
non-urban land to urban land during a certain period. 

(3) A membership function between the change probability and 
distance to expressway was developed based on regression 
analysis, and the range of the function was translated to [0,100] 
by normalizing the change probability with the maximum 
probability. 

Based on the model and standardized factors in each year, 
the urban growth during the periods of 1975-1984,1984- 
1991, and 1991-1997 was simulated, respectively, about 500 
times using the adaptive Monte Carlo method. For each simu- 
lation in one period, the simulation result was compared with 
the urban land map derived from remote sensing. Then the fit- 
ness index ( K )  was calculated to measure the overall perfor- 
mance of the simulation. Among all 500 simulations for each 
period, the highest fitness indices achieved were 0.59 for the 
period of 1975-1984,0.65 for 1984-1991, and 0.67 for 1991- 
1997, respectively. The best fitness simulations for 1975-1984, 
1984-1991, and 1991-1997 are shown in Figure 5. It is evident 
that the simulation results are similar to the urban patterns 
mapped with remote sensing as a whole but do not entirely 
match the scattered and small-scale urban patches. There could 
be several reasons for the relatively low fitness indices and 
clustered growth patterns: (1) some important factors associ- 
ated with urban growth were not captured by the model 
because land rent data were not available and some policy fac- 
tors were difficult to represent in a spatial context; (2) the deci- 
sion criteria on land use by individuals have both commonality 
and diversity, but the CA-based models only capture the com- 
monality; and (3) imperfect information and other uncertaint- 
ies also affect the model performance. 

From Figure 5, it is obvious that the urban spatial pattern 
of Beijing had not been developed in accordance with the 
"dispersed polycentric urban development plan" during 
1975-1997. Specifically, the central city was not controlled 
effectively and expanded quickly to its fringe areas, where the 
dispersed satellite cities developed slowly. As a result, there 
was a trend that satellite cities were absorbed into the central 
city to form one "big city," and greenbelts between the central 

city and the satellite cities were encroached gradually by 
urban land. Obviously, the "dispersed polycentric urban 
development plan" has not brought its function into full play 
during this entire period. Some reasons can be drawn from the 
calibrated weights (Table 1) in our urban growth model. 

(1) The strong attractive power of the central city and the agglom- 
eration effect stimulated by the economic development and 
population growth in Beijing has been underestimated in the 
general plan. The fact that the distance to central city and 
neighborhood have higher weight scores shows their primary 
contribution to urban growth during the three periods. The 
sum of the weights of these two factors is about 67 in 1975- 
1984, 54 in 1984-1991, and 44 in 1991-1997, respectively 
(Table 1). The strong agglomeration effect is largely strength- 
ened by the planned economic system adopted in China for 
some time and by use of bicycles as a primary means of trans- 
portation in Beijing. On the other hand, there were too many 
satellite cities of small scale in the general plan, causing the 
investment in infrastructure construction to be dispersed, and 
resulting in the slow growth of the satellite cities. As a result, 
the satellite cities had a low attraction (weights are 5, 9, and 
11, respectively, for each of the three periods) and were found 
difficult to restrict the expansion of the central city because 
of their incomplete infrastructures and unfavorable living 
conditions. 

(2) Ring road construction accelerated the central city expansion. 
The traffic system in the study area consists of two parts, the 
ring road structure within the central city and its fringe area 
and the linear structure linking the central city and the sub- 
urbs (see Figure 1). It is shown in Table 1 that the linear traffic 
system, including expressways and highways, played a less 
important role in urban growth (total weights of these two 
factors are only 12, 15, and 15 for each period, respectively). 

TABLE 1. CALIBRATED WEIGHTS DURING 1975-1984, 1984-1991, 
AND 1991-1997 

Weights Weights Weights 
During During During 

Factors 1975-1984 1984-1991 1991-1997 

Distance to central city 
Distance to expressway 
Distance to airport 
Distance to high way 
Distance to ring road 
Distance to railway 
Distance to satellite cities 

and sub-center cities 
Slope 
Neighborhood effect 
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1997 simulation result (kappa = 0.67) 1997 actual situation 

@ Satellite city fd Ringed road l Qinghe 5 Dinghahuang 9 Shijingshan 

S u k t e r c i t y  & Expnww~y Z~eiyuan 6 Fatou 10 Xiyuan 

t Capital a- # Hishws~ 3 ~immimqiao 7 Nanyuan 

I Urban land Railway 4 h g b a  8 Fengtai 

Figure 5. Urban growth simulations from 1975 to 1997. 

e. 2005, r = 0 01 35% f 2015, r=0.01 35% 

@ Sateil~te clty Rmged road 1 Qmghe 5 W1t3fuzh-g 9 Siujmgshan 

Subzenterc&y &%/ Expressway 2 Be~yuan 6 Fatou 10 X~yusn 

t C~PM arport (\4 Highway 3 ~~oux~anq~ao 7 Nunyuan 
I Urban land RallwaY 4 Dongba 8 Fengta~ 

Figure 6. Urban growth simulations from 1997 to 2015. (a) and (b) are 
results for Scenario 1: total urban land demand = 101.34 km2. (c) and (d) 
are results for Scenario 2: total urban land demand = 326.32 km2. (e) and 
(f) are results for Scenario 3: total urban land demand = 551.30 km2. 



In contrast, the weight of the ring road system shows an 
increasing trend from 10 to 21 with the construction of the 
third and fourth ring roads at the urban fringe area. Due to 
the construction of the ring roads, the accessibility to the 
central city was considerably improved at the urban ftinge 
areas in every direction. The central city expansion was accel- 
erated remarkably. On the other hand, the railway and airport 
had little to contribute to urban growth between 1975 and 
1997. 

The fact that greenbelts between the central city and satel- 
lite cities were not protected effectively is another cause of the 
failure of the general plan. Truck farms and cropland consti- 
tuted a major part of the greenbelt. They not only provided 
food, mainly vegetables, to the city but also played a role in the 
environmental adjustment of the city by increasing humidity 
and alleviating the heat island effect. However, they did not 
gain enough attention and no effective action was taken to pro- 
tect them. Thus, the greenbelts became the dominant area to be 
encroached by the expansion of the central city because of 
their close location and low rental costs. 

Urban Growth Simulation from 1997 to 2015 
The simulation of the trend of urban growth in the future will 
help assess the future effect of the general plan and provide a 
base for making reasonable development strategies. In 1997, the 
total area of urban land was 1023.55 W, approximately 22.5 
percent of the study area. Because the increase in urban land 
would lead to a decrease in greenbelts and likely produce addi- 
tional environmental problems, we assumed that the govern- 
ment would adopt a strict land policy to control urban growth. 
Therefore, we set three scenarios: by 2015 the area of urban land 
will only occupy 25 percent, 30 percent, or 35 percent of the 
total area. Thus, the additional amount of land conversion in 
2015 is set to 101.34 km2, 326.32 km2, and 551.30 km2, respec- 
tively. Based on the 1997 figure, the annual rate of increase of 
urban land will be 0.5 percent, 1.7 percent, and 2.9 percent, 
respectively. Because the annual rate of increase in the region 
was 13.6 percent, 4.4 percent, and 5.0 percent in 1975-1984, 
1984-1991, and 1991-1997, respectively, the three scenarios 
are all very conservative. After the total land demand in the 
future is determined, the optimal allocation of land demand for 
each year was obtained based on the sustainable land develop- 
ment model and the population prediction using a logistic 
model, which was built by using historical population data of 
Beijing between 1980 and 1998: i.e., 

where y(t) is the total population, which is the sum of the regis- 
tered population and the floating population. t = 0 indicates 
the year 1980. 

Based on the calibrated model (the weights calibrated from 
1991-1997 were used here) and the above land demand sce- 
narios (Table 2), urban growth in 2000,2005,2010, and 2015 
was simulated by assuming that those driving factors would 
play the same roles and no new traffic line would be added 
between 1997 and 2015. The results of 2005 and 2015 are 
shown in Figure 6. It can be seen that almost all satellite cities 
will be merged into the central city and the greenbelts will dis- 
appear completely by 2015, even using the most restrictive sce- 
nario. These suggest a failure of the "dispersed polycentric 
urban development plan" in the not too distant future. 
Although there are continuing debates on whether urban forms 
should be compact or dispersed (Ewing, 1997; Gordon and 
Richardson, 1997), we believe it is necessary to control urban 
growth and protect greenbelts around the city. 

TABLE 2. THE PREDICTION OF URBAN LAND DEMAND AND ADDITIONAL 
POPULATION FFIOM 1998 TO 2015 

-- - 

25% 30% 35% 
urbanized urbanized urbanized 

Additional land land land 
population (hm * hm) (hm * hm) (hm * hm) 
(10,000 

Period persons) r = 0.01 r = 0.01 r = 0.01 

1998-2000 28.0559 2909.09 6977.24 11045.39 
2001-2005 48.1109 3682.86 10220.43 16758 
2006-2010 43.0473 2348.18 8504.99 14661.8 
2011-2015 37.9759 1193.87 6929.09 12664.31 
Total 157.19 10134 32631.75 55129.5 

Note: r is the interest rate 

Conclusions 
We incorporated a new weight calibration method into a cel- 
lular automata (a) model that allowed model parameters to 
be estimated from the history of urban growth. The applica- 
tion of this model to Beijing indicates that the spatial pattern 
of urban development in Beijing has not been developed in 
accordance with the "dispersed polycentric urban develop- 
ment plan" during 1975-1997. There was a trend that satellite 
cities were absorbed into the central city to form one "big 
city," and greenbelts between the central city and satellite 
cities were encroached gradually by urban land. The cali- 
brated weights provided some reasonable explanations for 
the failure of the urban development plan. Three primary 
reasons are summarized here: (1) underestimation of the 
strong attractive power of the central city and the agglomera- 
tion effect in the general plan, (2) strong effects of ring road 
construction, and (3) the shortage of effective means to pro- 
tect the greenbelts between the central city and satellite cities. 
The simulation of urban growth suggested that almost all sat- 
ellite cities would be merged with the central city and the 
greenbelts in-between would disappear completely by 2015, 
even when using the most restrictive scenario. In order to 
realize sustainable development in Beijing, a new urban 
development plan and effective measures for implementing 
the plan are needed. The CA-based urban growth model 
developed here can play an important role in developing the 
new plan. 
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