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Abstract

This paper compares different image processing routines to
identify suitable remote sensing variables for urban classifi-
cation in the Marion County, Indiana, USA, using a Landsat
7 Enhanced Thematic Mapper Plus (ETM+) image. The
ETM+ multispectral, panchromatic, and thermal images

are used. Incorporation of spectral signature, texture, and
surface temperature is examined, as well as data fusion
techniques for combining a higher spatial resolution image
with lower spatial resolution multispectral images. Results
indicate that incorporation of texture from lower spatial
resolution images or of a temperature image cannot improve
classification accuracies. However, incorporation of textures
derived from a higher spatial resolution panchromatic image
improves the classification accuracy. In particular, use of
data fusion result and texture image yields the best classifi-
cation accuracy with an overall accuracy of 78 percent and
a kappa index of 0.73 for eleven land use and land cover
classes.

Introduction

Accurate image classification results are a prerequisite for
many environmental and socioeconomic applications (Jensen
and Cowen, 1999), such as urban change detection (Ward
et al., 2000), urban heat islands (Lo et al., 1997; Weng,
2001), and estimation of biophysical, demographic, and
socioeconomic variables (Lo, 1995; Thomson and Hardin,
2000). However, generating a satisfactory classification image
from remotely sensed data is not a straightforward task.
Many factors contribute to this difficulty, including (a) the
characteristics of a study area, (b) availability of suitable
remotely sensed data, ancillary and ground reference data,
(c) proper use of variables and classification algorithms, (d)
the analyst’s experience, and (e) the time constraint. Urban
landscapes are typically composed of features that are
smaller than the spatial resolution of the sensors: a complex
combination of buildings, roads, grass, trees, soil, and water
(Jensen, 2000). This characteristic of urban landscapes
makes mixed pixels a common problem in medium spatial
resolution data (between 10 to 100 m spatial resolutions)
such as Landsat TM/ETM+. Such a mixture becomes espe-
cially prevalent in residential areas where buildings, trees,
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lawns, concrete, and asphalt can all occur within a pixel.
The low accuracy of land cover classification in urban areas
is largely attributed to the mixed pixel problem.

As fine spatial resolution data (better than 5 m spatial
resolution), such as Ikonos (Sugumaran et al., 2002; van der
Sande et al., 2003) and ADAR digital multispectral scanner
imagery (Thomas et al., 2003), become easily available in
recent years, they have been increasingly utilized for urban
studies. A major advantage of these fine spatial resolution
imageries is that such data greatly reduce the mixed pixel
problem, providing the potential to extract much more
detailed information of urban structures compared with
medium spatial resolution data. However, a new severe
problem comes with the fine spatial resolution image data,
i.e., the shade problem caused by topography, tall buildings,
or trees (Asner and Warner, 2003). Moreover, high spectral
variation within any land-cover class often decreases the
classification accuracy. The huge amount of data storage and
severe shade problem in fine spatial resolution image give
rise to challenges for selection of suitable image processing
approaches and classification algorithms over a large area.
Last but not least, high spatial resolution imagery is much
more expensive and requires much more time to implement
data analysis than medium spatial resolution image data.

In practice, medium spatial resolution imagery, espe-
cially the TM/ETM+ being readily available for multiple
dates, is still the most commonly used data for urban
classification, in spite of the mixed pixel problem. Different
approaches have been used in order to improve urban
classification accuracy. These approaches can be roughly
grouped into four categories: (a) use of sub-pixel information
(Rashed et al., 2001; Phinn et al., 2002), (b) data integration
of different sensors or sources (Harris and Ventura, 1995;
Haack et al., 2002), (c) making full use of the spectral
information of a single sensor (Gong and Howarth, 1992;
Stuckens et al., 2000; Shaban and Dikshit, 2001), and (d) use
of expert knowledge (Stefanov et al., 2001; Hung and Ridd,
2002). Traditional per-pixel classification algorithms, such as
maximum likelihood classifier (MLC), are still frequently
used for image classification due to their simplicity and
availability. However, much attention has been shifted to
develop more advanced techniques and classification
algorithms, such as neural network, contextual, object
oriented, and knowledge-based classification approaches in
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the past decade (Stuckens et al., 2000; Zhang and Foody,
2001; Thomas et al., 2003; Zhang and Wang, 2003).

Making full use of remote sensing information may be
the most efficient and effective way to improve classification
accuracy. Remote sensing data has spectral, spatial, tempo-
ral, polarization, and other characteristics. One of the critical
steps is to select suitable remote-sensing variables for
classification. Much previous research used sPOT HRV data
for urban classification due to its high spatial resolution
comparing with Landsat ™™ data (Franklin and Peddle,
1990; Marceau et al., 1990; Gong et al., 1992; Shaban and
Dikshit, 2002). High spatial resolution is considered to be
more important than high spectral resolution in urban
classification (Jensen and Cowen, 1999). The enhanced
characteristic of ETM+ data, compared with ™™, adds a
panchromatic band of 15 m spatial resolution, and also
increases the spatial resolution of thermal infrared (TIR) band
to 60 m. Figure 1 illustrates some typical urban features in
different spatial resolution images; in the aerial photograph
of 5 m spatial resolution, buildings and roads can be easily
observed, but in the panchromatic image with 15 m spatial
resolution, the shapes of buildings and some narrow roads
in residential areas disappeared. As spatial resolution
deceased to 30 m in the ETM+ band 5 and 60 m in the TIR
image, interpretation of buildings became nearly impossible.
Urban remote sensing has used the ETM+ multispectral
bands, but has not fully utilized the panchromatic and TIR
bands for urban classification. The panchromatic image with
15 m spatial resolution not only reduces mixed pixels, but
also provides a rich texture and contextual information than
multispectral bands with 30 m spatial resolution. Use of
surface temperatures derived from the TIR band may also be
helpful for urban classification owing to its unique spectral
characteristic. Therefore, it may be assumed that incorpora-

Figure 1. Impact of spatial resolution on image interpre-
tation. (a) aerial photograph with 5 m spatial resolution,
(b) ETM+ Panchromatic image with 15 m spatial
resolution, (c) ETM+ short-wave infrared image (band 5)
with 30 m spatial resolution, and (d) temperature image
from ETM+ thermal band with 60 m spatial resolution.
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tion of higher spatial resolution panchromatic band or
addition of temperature image into multispectral images
improves urban classification performance.

This paper will examine the potential roles of high
spatial resolution panchromatic band and relatively low
spatial resolution TIR band in improving urban classification
accuracy, and attempt to identify a suitable remote sensing
procedure(s) for urban classification through a comparative
study of different image processing routines. To be specific,
this paper will examine the use of textures from multispec-
tral bands and from the panchromatic band, surface temper-
atures, data fusion technique, and the combination of data
fusion and texture for improving urban classification
accuracies.

Background

Use of Texture Information

Many texture measures have been developed (Haralick et al.,
1973; Kashyap et al., 1982; Emerson et al., 1999), and used
for land cover classification (Marceau et al., 1990; Augusteijn
et al., 1995; Groom et al., 1996; Podest and Saatchi, 2002;
Chen et al., 2004). Franklin and Peddle (1990) indicated that
use of textures from grey level co-occurrence matrix (GLCM)
and spectral features of SPOT HRV data improved overall
classification accuracy. Gong et al. (1992) compared GLCM,
simple statistical transformations (SST), and texture spectrum
(TS) approaches with sPOT HRV data, and found that certain
textures derived from GLCM and SST could improve urban
classification accuracy. Shaban and Dikshit (2001) investi-
gated GLCM, grey level difference histogram (GLDH), and sum
and difference histogram (SADH) textures from SPOT spectral
data in an Indian urban environment, and found that a
combination of texture and spectral features significantly
improved the classification performance. Compared with the
result using pure spectral features, approximately 9 percent
and 17 percent improvement were achieved for an addition of
one and two textures, respectively. They further found that
contrast, entropy, variance, and inverse difference moment
provided higher accuracy than other tested texture measures
and the best sizes of moving window were 7 X 7 and 9 X 9.
Use of multiple or multi-scale texture images should be in
conjunction with spectral information to improve classifica-
tion results (Kurosu et al., 2001; Shaban abd Dikshit, 2001;
Butusov, 2003). However, for a specific study, there are not
straightforward ways for identifying suitable texture measures
because texture varies with the characteristics of the land-
scape under investigation and image data used. Identifying
suitable textures involve determination of texture measure,
image band, and the size of the moving window (Franklin
et al., 1996; Chen et al., 2004).

Data Fusion

Image data from different sensors have their own strengths
and limitations. The techniques of data fusion or integration
of multi-sensor or multi-resolution data take advantage of
the strengths of distinct data for improvement of visual
interpretation and quantitative analysis. In general, three
levels of data fusion can be identified (Gong, 1994), i.e.,
pixel, feature, and decision. Data fusion involves two steps
of merging procedures: geometrical co-registration of two
datasets and mixture of spectral and spatial information
contents to generate a new dataset that contains the
improved information from both datasets. Accurate registra-
tion between the two datasets is extremely significant for
precisely extracting the information contents from both
datasets, especially when line features such as roads and
rivers are the objects of concern.
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Many methods have been developed to blend spectral
and spatial information. Solberg et al. (1996) divided the
methods of data fusion into four categories: statistical, fuzzy
logic, Dempster-Shafer evidence theory, and neural network.
Dai and Khorram (1998) presented a hierarchical data fusion
system for vegetation classification. Pohl and Van Genderen
(1998) reviewed methods for fusion of multi-sensor data,
including color related techniques (e.g., color composite,
intensity-hue-saturation (1HS) and luminance-chrominance,
statistical/numerical methods (e.g., arithmetic combination,
principal component analysis (PCA), high pass filtering,
regression variable substitution, canonical variable substitu-
tion, component substitution, and wavelets), and various
combinations of the above methods. Among these methods,
IHS transformation was identified to be the most frequently
used method for improving visual display of multi-sensor
data (Welch and Ehlers, 1987), but the IHS approach can
only employ three bands and the resultant image may be not
suitable for further quantitative analysis such as classifica-
tion. PCA is often used for data fusion because it can pro-
duce an output result that better preserves the spectral
integrity of the input dataset. In recent years, wavelet-
merging techniques have shown to be another effective
approach to generate a better improvement of spectral and
spatial information contents (Li et al., 2002; Simone et al.,
2002; Ulfarsson et al., 2003). Previous research has sug-
gested that integration of multi-sensor or multi-resolution
data, such as T™ and radar (Ban, 2003; Haack et al., 2002),
SPOT HRV and ™ (Welch and Ehlers, 1987; Yocky, 1996),
and SPOT multispectral and panchromatic bands (Garguet-
Duport et al., 1996; Shaban and Dikshit, 2002), would
improve classification results.

Data Transformation

It is well known that remotely sensed data are highly corre-
lated between the adjacent spectral bands, such as the
visible bands in Landsat TM/ETM+ (Barnsley, 1999). Image
transformation techniques are often used to reduce the
number of image channels, so that the information contents
would be concentrated on a few transformed bands (Jensen,
1996). Several techniques have been developed to transform
the data from highly correlated bands into an orthogonal
dataset. The PCA, tasseled cap, and minimum noise fraction,
are among the most commonly used methods (Oetter et al.,
2000; Wu and Linders, 2000). These methods have some
common characteristics: (a) these transforms are linear
combinations of the original spectral bands; (b) these trans-
forms project the original data into a new coordinate set;
and (c) the majority of information is concentrated on
limited principal components (PC) which are uncorrelated or
weakly correlated with each other. In practice, PCA is the
most frequently used approach in many applications, such
as used for reduction of data dimension, data fusion, and
change detection. PCA is used in this research for reduction
of data dimension and for data fusion of higher spatial
resolution panchromatic band with lower spatial resolution
multispectral bands.

Study Area

The City of Indianapolis within Marion County, Indiana,
United States, was chosen as the study area (Figure 2).
Indianapolis, the state capital, is a key center for manufac-
turing, warehousing, distribution, and transportation in

the state. With almost 800,000 population, the city is the
nation’s twelfth largest. It possesses several other advantages
that make it an appropriate choice for such a study. It has a
single central city and other large urban areas in which the
vicinity has not influenced its growth. The city is located in
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Figure 2. The study area: Marion County, Indiana, UsA
(Road layer overlaid on ETM+ band 7 image).

a flat plain, and is relatively symmetrical, having possibili-
ties of expansion in all directions. Like most American
cities, Indianapolis is increasing in population and in area.
The areal expansion is through encroachment into the
adjacent agricultural and non-urban land. Certain decision-
making factors such as density of population, distance to
work, property value, and income structure encourage some
sectors of the metropolitan Indianapolis to expand faster
than others. Accurate classification of urban land-use and
land-cover (LULC) types is significant to understand, to
control, and to plan its future development.

Methods

Image Preprocessing

A Landsat 7 ETM+ image (path 21/row 32) of Marion
County, Indiana, which was acquired on 22 June 2000, was
used in this study. The data was radiometrically converted
to at-sensor reflectance using an image-based correction
method (Markham and Barker, 1987). The image was
rectified to a common Universal Transverse Mercator
coordinate system based on 1:24 000 scale topographic
maps, and was resampled to a pixel size of 30 m by 30 m
using the nearest neighbor resampling algorithm. The root
mean square error of less than 0.5 pixels was achieved
during the rectification.
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Color orthophotographs, which were dated March and
April of 2002, were used as ground reference data for
collection of training and test sample plots. The orthopho-
tographs have a spatial resolution of 0.5 foot (i.e., 0.14 m).
The coordinate system is Indiana State Plane East, Zone
1301 in NAD83. Nine orthophotographs covering the whole
study area were obtained and registered to the same projec-
tion as the ETM+ image and re-sampled to 5 m pixel size for
quicker display and reduced computing time. The orthopho-
tographs were then mosaiced into one image of the study
area.

Texture Analysis

Incorporation of texture and spectral information has been
proved to be effective in improving classification accuracy
(Shaban and Dikshit, 2001; Butusov, 2003). Following
research conducted by Shaban and Dikshit (2001), variance
associated with a window size of 9 X 9 was selected as a
texture measure and used in this study. In order to examine
the significance of textures in improving classification
performance, variance textures were calculated for the
multispectral bands 3, 4, and 5 with 30 m spatial resolution
and for the panchromatic band with 15 m spatial resolution.
The variance is mathematically expressed as

n—1 1 n—1
E (Xi/' - E Xij)z
ij=0 nji=o
Var = (1)
n—1

where Xj; is the reflectance value of pixel (i, j), and n is the
number of pixels in a window. Figure 3 provides a part of

Figure 3. Texture images derived from the variance
texture measure associated with different bands and
spatial resolution images. (a) texture based on ETM+
band 3 with 30 m spatial resolution, (b) texture based
on ETM+ band 4 with 30 m spatial resolution, (c)
texture based on ETM+ band 5 with 30 m spatial
resolution, and (d) texture based on ETM+ panchromatic
band with 15 m spatial resolution.
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the study area for a comparison of textures from ETM+
bands 3, 4, 5, and panchromatic band. Textures from ETM+
bands 3, 4, and 5 seem over-smoothed and lost much
detailed information, but the texutre from panchromatic
band appeared a better visual interpretation effect than those
from lower spatial resolution multispectral bands.

Surface Temperature Computation

The thermal infrared (TIR) image was converted to a surface
temperature map according to the following procedure
(Weng et al., 2004). The digital number (DN) of Landsat
ETM+ TIR band was first converted into spectral radiance
using Equation 2, and then converted to at-satellite bright-
ness temperature (i.e., blackbody temperature, Tp) under the
assumption of uniform emissivity using Equation 3 (Landsat
Project Science Office, 2002):

L, = 0.0370588 X DN + 3.2, (2)
K,

K, ’
=24
ln(L)\ 1 )

where Tp is effective at-satellite temperature in Kelvin, L, is
spectral radiance in watts/(meters squared X ster X um);
and K, and K, are pre-launch calibration constants. For
Landsat-7 ETM+, K, = 1282.71 K and K, = 666.09 mWcm 2
st 'um™! were used.

The emissivity corrected land surface temperatures (7%)
were finally computed as follows (Artis and Carnhan, 1982):

1+ (WX Tglp)lne

Ty = (3)

Ts

(4)

where: A is the wavelength of emitted radiance [for which the
peak response and the average of the limiting wavelengths

(A = 11.5 um) (Markham and Barker, 1985) were used], p = h
X c¢/o (1.438 X 1072 mK), o = Stefan Bolzmann’s constant
(5.67 X 1008 Wm 2K ™ = 1.38 X 10" # J/K), h = Planck’s
constant (6.626 X 107* J sec), ¢ = velocity of light (2.998

X 10% m/sec), and & is spectral emissivity.

Principal Component Analysis

PCA was used for two purposes in this research: reducing
data dimension and implementing data fusion. Due to high
correlation between bands (note: the correlation coefficients
are 0.985 and 0.970 between bands 1 and 2 and between
bands 2 and 3, respectively), data redundancy was signifi-
cant in the ETM+ data. PCA projected the original dataset
into a new coordinate set with no correlation between the
new images. The first principal component (PC1) was a sum
of different bands, highlighting the overall brightness. The
PC2 was a difference between the sum of bands 4 and 5 and
the sum of visible bands and band 7, enhancing vegetation
information; and PC3 the difference between short-wave
infrared bands (TM 5 and T™ 7) and the sum of visible bands
and near infrared band (Table 1). The PC1 contained the
largest percentage of the data variance and the second PC the
second largest data variance, and so on (Table 1). The higher
components appeared noisy because they contained very
little variance, much of which was due to noise in the
original spectral data. In this study, the first three compo-
nents accounted for 99.28 percent of total variance.

The data fusion procedure based on the PCA approach
integrated the ETM+ multispectral and the panchromatic
images according to the following steps: (a) transforming
ETM+ multispectral bands into six pCs, (b) re-mapping the
panchromatic image into the data range of PC1, (c) substitut-
ing the pc1 with the panchromatic image, and (d) applying
an inverse PCA to the data. One crucial step when using this
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TABLE 1. EIGENVECTOR AND EIGENVALUE FROM PRINCIPAL COMPONENT ANALYSIS

ETM+ Bands Eigenvalue and Percentage
PC Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 Eig val. % Accu%
PC1 0.418 0.399 0.472 0.208 0.482 0.410 4227.45 78.21 78.21
PC2 —0.102 —0.136 —0.358 0.854 0.305 —0.144 915.40 16.94 95.15
PC3 —0.506 —0.313 —0.138 —0.299 0.577 0.452 223.43 4.13 99.28
PC4 —0.551 —0.047 0.547 0.358 —0.424 0.295 18.71 0.35 99.63
PC5 —0.344 0.165 0.424 —0.099 0.396 —0.713 16.38 0.30 99.93
PC6 0.369 —0.834 0.389 0.033 0.067 —0.107 3.8 0.07 100

approach is to perform a histogram matching between the
histogram of a panchromatic image and that of the pPC1.

Figure 4 compares the results of PcA and data fusion
with the original Landsat image data. It indicates that PC1
highlighted the impervious surfaces of the study area. The
panchromatic image provided more detailed information due
to its higher spatial resolution. Comparing the data fusion
result with the original ETM+ band 5, the new image clearly
enhanced spatial details, especially linear features.

Image Classification

To identify the most suitable method(s) for improving urban
classification accuracy, different image processing routines
were designed (Table 2). The following questions were
examined in the process of image classification: (a) would
the use of the first three PCs from PCA of the ETM+ multi-
spectral bands increase or decrease classification accuracy?
(b) would incorporation of textures from 30 m multispectral
bands improve classification accuracy? (c) would incorpora-
tion of a texture from 15 m panchromatic band improve
classification accuracy? (d) would incorporation of surface

Figure 4. A comparison of the urban landscapes before
and after image transformations. (a) the first component
from PcA (30 m spatial resolution), (b) panchromatic
image (15 m spatial resolution), (c) original ETM+ band
5 image (30 m spatial resolution), and (d) band 5 image
after data fusion using PcA (15 m spatial resolution).
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temperature improve classification accuracy? (e) would
incorporation of both texture and surface temperature
improve classification accuracy? (f) would a data fusion of
panchromatic and multispectral images improve classifica-
tion accuracy? and (g) would incorporation of data fusion
and texture images improve classification accuracy?

Before implementing image classification, the selection
of a suitable classification scheme is important. By visually
analyzing the ETM+ color composite and comparing with the
orthophotography images, a total of seventeen land-use and
land-cover (LULG) classes were identified. Because of the
complexity of urban landscapes, the same LULC classes may
have different spectral characteristics. Initial LULC classes
included two urban types (large buildings with very high
reflectance and buildings with relative lower reflectance),
three types of transportation (wide highways, narrow high-
way, and roads), high density residential, low density
residential, non-vegetation wetland, three types of crops,
fallow, grass, pasture, upland forest, wetland forest, and
water. Figure 5 gives a comparison among commercial, high-
density, and low-density residential lands.

After initial image interpretation, two classification
schemes with six- and eleven-classes were finally selected
(Table 3). In the classification scheme with eleven classes,
two building types and three transportations were merged
into the commercial/industrial/transportation lands (CIT),
and three types of crops combined as one. In the classifica-
tion scheme with six classes, cropland, fallow, and pastures
were further grouped as agricultural land, while upland
forest and wetland forest combined into the forest class.
High-density and low-density residential lands were merged
to create a residential class.

Training sample plots were selected from the 2002 color
orthophotography. Fifteen to twenty sample plots were
selected for each class. The spectral response curves of
selected sample plots for each class were analyzed to ensure
that they have similar reflectance characteristics within the
class, but have distinct response patterns between the
classes. Next, the transformed divergence index was com-
puted to analyze the separability of the selected classes.
After refining the training sample data, the maximum
likelihood classification (MLC) algorithm was applied to
classify the images. The resultant thematic images were
merged into eleven and six classes, respectively, and a
majority filter with 3 X 3 window size was applied to
remove the noise in the classified images.

Accuracy Assessment

Accuracy assessment is considered an important step in
evaluation of different image processing routines in image
classification (Foody, 2002). The meaning and calculation

for overall accuracy, producer’s accuracy, user’s accuracy,
and kappa coefficient have been described extensively in the
literature (Congalton, 1991; Janssen and van der Wel, 1994;
Smits ef al., 1999; Foody, 2002). An error matrix was con-
structed to assess the result of each classification, with which
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TABLE 2.

IMAGE CLASSIFICATION METHODS INVESTIGATED

No. Code Method

1* ETM ETM+ multispectral image (excluding thermal and panchromatic bands)

2% PCA The first three components derived from PcA of ETM+ multispectral image

3* B345Text Combination of spectral bands (ETM+ multispectral bands) and textural data
(three textures based on variance associated with 9 X 9 window size and
ETM+ bands 3, 4, and 5.

4 Pantext Combination of spectral bands (ETM+ multispectral bands) and textural data
(variance associated with 9 X 9 window size and panchromatic image)

5% Temp Combination of spectral bands (ETM+ multispectral bands) and temperature
(derived from TIR band)

6 Pantext-Temp Combination of spectral bands (ETM+ multispectral bands), textural data (variance
associated with 9 X 9 window size and panchromatic image), and temperature
(derived from TIR band)

7 Pan-Fusion Data fusion using pcA method based on ETM+ multispectral bands and one
panchromatic band

8 Fusion-Pantext Combination of data fusion image (using pcA method) and texture (derived from

panchromatic image using variance associated with 9 X 9 window size)

Note: *1, 2, 3, and 5 approaches used 30 m spatial resolution images, others used 15 m spatial resolution images because they used

panchromatic bands with 15 m spatial resolution.

pertinent accuracy assessment parameters can be derived. A
total of 350 test samples were randomly selected and examined
using color orthophotography for accuracy assessment. The
overall accuracy, producer’s accuracy, user’s accuracy, and
kappa coefficient were calculated for each classified image.

Results

Table 4 provides a comparison of accuracy assessment
results among different image processing routines using the
classification scheme II, and Table 5 provides a comparison

) wik ¥
High density’,
 residential.

Y8 Ty .
" * High density
residential

Figure 5. Examples of commercial, high-density and
low- density residential lands. (a) panchromatic image
illustrating commercial and high density residential
lands, (b) aerial photograph illustrating high density
residential lands, (c) aerial photograph illustrating
commercial lands, and (d) aerial photograph illustrating
low density residential lands.
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based on the classification scheme 1. Because of similar
nature between the two tables, the following analysis
focuses on the classification scheme II.

In the classification result with the ETM+ multispectral
data (Method 1), an overall accuracy of 70.6 percent was
achieved. CIT, LDR, FAL, PAS, and WAT have higher accuracies
(greater than 79 percent of PA and 72 percent of UA) than
other classes. The main confusion come from the following
pairs of LULC classes: (1) CIT and HDR; (2) CRP, PAS, and GRA;
(3) upF and WLF; and (4) UPF and LDR. The following com-
pares other processing methods with Method 1, so as to
determine whether an image processing method will
improve the classification accuracy.

The overall classification accuracy of Method 2, which
used the first three components of the ETM+ multispectral
data, is 68.3 percent, a similar level of accuracy to Method 1.
Compared to Method 1, the accuracies of LDR, CRP, and FAL
classes were decreased, but the performance of WLF and PAS
classes were improved. CIT, HDR, and GRA remained the same
level of accuracies. The confusions between CRP and GRA,
between UPF and LDR, and between WLF and UPF continued to
affect the classification performance. In addition, the fourth
PC had revealed some useful information for classification of
CRP and UPF, but contained dominantly noise. Method 2 could
be very useful for image classification of a large area, since it
could greatly reduce image storage and classification time.

Method 3 has a poorer performance than Method 1,
with an overall classification accuracy of 62.3 percent.
Method 3 combined the multispectral image with three
textures that were developed from ETM+ bands 3, 4, and 5
associated with a 9 X 9 window size. The classification
accuracies of almost all classes were reduced marginally.
This implies that selected textures had smoothed the
differences among the LULC classes, especially between the
HDR and LDR, between UPF and WLF, and between CRP and
GRA (see Figure 3). In contrast, Method 4 clearly outperforms
Method 1. The overall accuracy of 74 percent was achieved,
an improvement of 3.4 percent. The combination of multi-
spectral data with a texture image derived from the panchro-
matic band improved the classification accuracies of most
LULC classes. Confusions between CRP and GRA and between
UPF and WLF were substantially minimized. It is apparent
that textures derived from higher spatial resolution data
could provide much more useful information than those
derived from lower spatial resolution data (Figure 3).

Incorporation of a temperature image in the classifica-
tion did not improve the classification result. Method 5
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TABLE 3. DEFINITION OF LAND-USE AND LAND-COVER CLASSIFICATION SCHEMES

Classification Scheme I Code I Classification Scheme II Code II Definition
Commercial/industrial/ CIT Commercial/industrial/ CIT Highly developed areas, mainly for commercial
transportation lands transportation lands or industrial use, including transportation
Residential RES High density residential HDR Highly developed areas where people reside in
high numbers
Low density residential LDR A mixture of constructed materials and vegetation,

population density is lower than in high density
residential areas

Forest FOR Upland forest UPF Areas dominated by dense vegetations
Wetland forest WLF Areas covered by forest but the soil is periodically
saturated with water
Agricultural lands AGR Crops CRP Different crops in agricultural lands
Fallow FAL Areas used for the production of crops that are
temporarily barren or with sparse vegetation
cover.
Non-vegetation wetland NVW Areas where the soil is periodically saturated with
water
Pastures PAS Areas of grasses used for livestock grazing or the
production of hay crops
Grass GRA Grass GRA Vegetation planted in developed settings for
recreation
Water WAT Water WAT All areas of open water

TABLE 4. ACCURACY ASSESSMENT OF DIFFERENT IMAGE CLASSIFICATION METHODS WITH ELEVEN LAND-USE AND LAND-COVER CLASSES

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8

ETM PCA B345Text Pantext Temp Pantext-Temp Pan-Fusion Fusion-Pantext

LULC
types PA% UA% PA%  UA% PA% UA%  PA% UA%  PA%  UA%  PA%  UA%  PA% UA%  PA% UA%

CIT 79.41 85.71 79.41 85.71 95.59 61.90 86.76 84.29 75.00 77.27 92.65 76.83 71.64 96.00 88.24 93.75
HDR 82.35 41.18 82.35 41.18 35.29 60.00 70.59 70.59 64.71 57.89 52.94 60.00 83.33 41.67 70.59 66.67
LDR 82.35 72.41 78.43 70.80 63.73 75.58 90.20 66.67 80.39 67.21 85.29 69.60 79.41 69.83 94.12 68.09
UPF 66.67  90.91 66.67 86.96 50.00 88.24 66.67 100.00 50.00 88.24 73.33 100.00 70.00 91.30 76.67 92.00
WLF 33.33 30.00 55.56 50.00 22.22 40.00 55.56 35.71 44.44 50.00 55.56 62.50 77.78 41.18 100.00 69.23
CRP 69.23 58.70 58.97 47.92 33.33 59.09 51.28 95.24 58.97 82.14 51.28 86.96 66.67 57.78 51.28 86.96
FAL 81.82 90.00 72.73 80.00 81.82 75.00 72.73 80.00 81.82 90.00 81.82 81.82 81.82 100.00 81.82 100.00
NVW  75.00 50.00 75.00 42.86 50.00 66.67 50.00 50.00 75.00 60.00 50.00 50.00 75.00 60.00 50.00 50.00
PAS 100.00 75.00 100.00 100.00 100.00 75.00 100.00 75.00 100.00 75.00 100.00 75.00 100.00 100.00 100.00 75.00
GRA 34.55 67.86 34.55 65.52 49.09 40.30 47.27 72.22 56.36 50.82 47.27 57.78 41.82 71.88 49.09 75.00
WAT  91.67 100.00 83.33 100.00 91.67 57.89 100.00 75.00 83.33 100.00 91.67 100.00 100.00 85.71 100.00 92.31
OCA 70.57 68.29 62.29 74.00 69.14 73.43 70.86 78.00

OKS 0.6446 0.6176 0.5423 0.6800 0.6218 0.6730 0.6501 0.7290

Note: PA — Producer’s Accuracy; UA — User’s Accuracy; OCA — Overall Classification Accuracy; oks — Overall Kappa Statistics

TABLE 5. ACCURACY ASSESSMENT OF DIFFERENT IMAGE CLASSIFICATION METHODS WITH SiX LAND-USE AND LAND-COVER CLASSES

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8

ETM PCA B345Text Pantext Temp Pantext-Temp Pan-Fusion Fusion-Pantext

LULC
types PA% UA% PA%  UA% PA% UA%  PA% UA%  PA%  UA%  PA%  UA%  PA% UA%  PA% UA%

CIT 76.47  85.25 76.47 89.66 94.12 59.26 85.29 84.06 70.59 78.69 92.65 75.00 70.59 100.00 88.24 93.75
RES 91.60 71.24 88.24 70.00 67.23 85.11 92.44 70.97 87.39 72.22 89.08 76.26 91.60 71.71 98.32 73.13
AGR 80.70 68.66 78.95 64.29 56.14 76.19 64.91 94.87 7193 8542 64.91 90.24 80.70 71.88 63.16 90.00
GRA 36.36  71.43 34.55 65.52 49.09 40.91 47.27 68.42 52.73 47.54 4545 55,56 40.00 70.97 49.09 79.41
FOR 66.67 83.87 66.67 78.79 48.72 86.36 76.92 90.91 53.85 87.50 74.36 96.67 84.62 80.49 89.74 89.74
WAT  83.33 100.00 83.33 100.00 83.33 55.56 100.00 75.00 83.33 83.33 91.67 100.00 100.00 85.71 100.00 92.31
OCA 75.14 73.43 66.29 78.00 72.29 77.43 77.14 82.00

OKS 0.6742 0.6527 0.5737 0.712 0.639 0.7063 0.7022 0.7636

Note: pA — Producer’s Accuracy; ua — User’s Accuracy; 0ca — Overall Classification Accuracy; 0ks — Overall Kappa Statistics

produces an overall accuracy of 69.1 percent. Some classes, classes, such as LDR and UPF, did not help separating them.

such as CIT, HDR, LDR, and UPF decreased in accuracy, although  Furthermore, the low spatial resolution of the Landsat ETM+
the accuracy of other classes, such as WLF, did rise. The TIR band (60 m, as compared with 30 m for the multispectral
slight difference of thermal response pattern among the bands) may smooth the inherent differences between certain
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classes (see Figure 1). Method 6 is similar to Method 5, but
added a texture image derived from the panchromatic band
for classification. A global classification accuracy of 73.4
percent was achieved. Clearly, this improvement is attributa-
ble to the texture image from the panchromatic band, not to
the temperature image. The most significant improvement
lies in the distinction between UPF and WLF.

Methods 7 and 8 employed the technique of data fusion.
The former merged the ETM+ multispectral and the panchro-
matic bands using the PCA fusion method, and the latter
combined the data fusion image (resulted from Method 7)
with a texture image derived from the panchromatic band.
Method 7 did not significantly improve the overall accuracy,
but the classification accuracy of certain classes improved,
including UPF, WLF, FAL, and GRA. In contrast, the classifica-
tion accuracy of LDR declined slightly. The confusion
between LDR and UPF remained as spatial resolution
increased. This implies that although data fusion with
different spatial resolution images is becoming as a popular
approach for image classification, the increased spectral
variation within a class may degrade the distinction among
certain classes, and thus the overall classification accuracy.
This is especially true for LDR due to its complex composi-
tion of the materials and increased spectral variation within
the LDR class. Method 8 has the best performance among all
the methods examined. Almost all selected classes aug-
mented their classification accuracies to a certain degree. In
particular, the confusion between CIT and HDR reduced, so
did between LDR and UFF. It is concluded that the combina-
tion of data fusion and texture is an effective way to
improve LULC classification accuracy. The data fusion of the
panchromatic and multispectral bands restrained the mixed
pixel problem, while the texture image from the panchro-
matic band moderated the problem of spectral variation
within a class.

Discussion and Conclusions

Image classification in urban landscapes using medium
spatial resolution data is a challenging task. Major confusion
exists among GRA, PAS, and CRp, between UPF and LDR, and
between CIT and HDR. Texture and temperature may improve
classification accuracy for some classes, but may degrade
other classes. Data fusion using multispectral and high
spatial resolution panchromatic images are useful for
improving classification accuracy, but high spatial resolution
also increases spectral variation within the classes, decreas-
ing classification accuracy. Incorporation of data fusion and
texture information derived from high spatial resolution
image can significantly improve the classification accuracy.
This study demonstrates that incorporation of texture
information from the Landsat ETM+ panchromatic image
improved the overall accuracy by 3.4 percent, while use of
data fusion and the texture improved by 7.4 percent,
compared to the use of pure multispectral signatures of the
ETM+ image.

Incorporation of texture and spectral signatures is
conventionally assumed to provide better classification
results than use of pure spectral signatures (Shaban and
Dikshit, 2001; Butusov, 2003). However, the success for
incorporating texture images depends on the type of texture
measure, image used to derive textures, and the selection of
moving window size. For example, this study found that
incorporation of variance texture associated with window
size of 9 by 9 and image bands 3, 4, and 5 degraded the
classification accuracy, whereas incorporation of the same
texture measure but using the panchromatic image of 15 m
spatial resolution improved the classification accuracy.
Caution needs to be taken when texture measures are used
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to extract specific information in different study areas
because textures depend on the characteristics of a study
area and the image data used. The increase of spatial
resolution results in an increasing importance of texture in
image classification. For medium spatial resolution data,
large moving window sizes may smooth the differences
among the land cover classes, leading to lower classification
accuracy. As spatial resolution increases, it is necessary to
determine a sufficiently large moving window size(s),
because a small size(s) of window would enhance the noise.

Differences in thermal response among different land
cover types may be used to improve classification results.
However, this study indicates that incorporation of a
temperature image did not improve the overall classification
accuracy. Some classes generated even lower accuracy. This
can be attributed to the low spatial resolution of the thermal
band in the ETM+ sensor. Slight differences of temperatures
among land cover types contributed little in improving
classification at a local scale. However, similar types of
temperature information may be helpful for regional or
national land cover classification.

Image transform is often used in image processing to
reduce the dimension of image data and to condense the
information contents onto a limited number of components.
This is especially useful for hyperspectral data because of
high correlation and large data redundancy. Although the
majority of information contents are concentrated in the first
three components, use of other components may be neces-
sary. For example, this study indicates that the fourth
component contains some information on crops and forests,
and the fifth component contains information about roads.
Due to a large amount of noise in these components, it is
necessary to remove them before use.

Data fusion of multi-sensor or multi-resolution data is
often used to enhance visual interpretation and quantitative
analysis to extract information contents from different data
sources. Selection of a data fusion method for use depends
on the study objectives and the algorithm available. This
study indicates that data fusion using the PCA approach can
improve classification accuracy of certain classes. Incorpora-
tion of Landsat ETM+ panchromatic band with the multi-
spectral data reduced the number of mixed pixels, resulting
in improvement of classification accuracy. However, higher
spatial resolution data also possess high spectral variations
within the same land cover, leading to lower classification
accuracy. This study proves that a combination of data
fusion image and texture produced a better classification
result than other classification methods, due to the fact that
texture can reduce the variation within the land cover
classes.

Due to the complexity of urban landscapes and the
limitations of current sensor technology, the methodology used
in this study, i.e., the combination of data fusion and texture
measures can successfully improve image classification only to
a certain degree. Confusion among land cover types still exists.
Recently, sub-pixel analysis using spectral mixture models,
which un-mix an image into different fractions, has also
demonstrated effective for improving classification accuracy
(Rashed et al., 2001; Phinn et al., 2002; Lu and Weng, 2004).
Spectral unmixing provides a more realistic representation of
the true nature of a surface compared with that provided by
the assignment of a single dominant class to every pixel by
statistical models (Campbell, 2002), and is suitable to solve the
mixture problem for medium or low spatial resolution data.
Further studies are warranted by incorporation of fraction
images, texture, or other variables/data for image classification.
Moreover, commonly used parametric classifiers, i.e., MLC, may
not be very suitable for urban classification, since the his-
togram of the features of interest is often not normally distri-
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buted. Use of nonparametric classifiers should be advocated,
including neural network, decision tree, and other suitable
classifiers. It is certain that future research would hold great
promise in the areas of data fusion, spectral mixture analysis,
and texture measurement in conjunction with the use of
advanced nonparametric classifiers.
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