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Abstract
In this paper, three post-classification techniques are
proposed to improve the information content, thematic
accuracy, and spatial structure of pixel-based classifications
of complex urban areas. A shadow-removal technique based
on a neural network that was trained using the output of a
soft classification is proposed to assign shadow pixels to
meaningful land-cover classes. Knowledge-based rules are
suggested to correct wrongly classified pixels and to improve
the overall accuracy of the land-cover map. Finally, a
region-based filter is applied to reduce high-frequency
structural clutter. The three techniques were successfully
applied to a pixel-based classification of a QuickBird image
covering the city of Ghent, Belgium, improving the kappa
index-of-agreement from 0.82 to 0.86 and transforming the
shadow pixels into meaningful land-cover information.

Introduction
Nearly half of the Earth’s population dwells in cities. In
industrialized regions like Europe and the United States, the
level of urbanization reaches nearly 80 percent (UNCHS,
2001). The continuing growth of cities since the late
eighteenth century stretches the environment in and around
urban areas to its limits. Local decision makers need
effective and easy-to-use urban management tools to deal
with problems such as disorganized growth, low quality of
life, environmental degradation, and a deteriorating urban
infrastructure. Lack of reliable and sufficiently detailed data
is, however, a major obstacle for the problem analysis,
planning, and monitoring phases of a sustainable urban
management policy (E.C. Environment DG, 2004).

Very High Resolution (VHR) satellite images are poten-
tially an attractive source of information for local and
regional decision makers. Imagery with a resolution of 1 m
and less not only allows a detailed mapping of land-cover,
but the acquisition of images at multiple dates also facili-
tates monitoring dynamic areas where rapid changes in
land-cover occur. This may substantially improve our
understanding of the complex processes of change that take
place within cities and at the urban fringe (e.g., the European
Commission’s MOLAND project: http://moland.jrc.it). Typical
examples of the application of VHR data in an urban context
are mapping urban green (Pillmann and Kellner, 2002; Ries
et al., 2002) and assessing impervious surface cover (Arnold
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et al., 2000; Flanagan and Civco, 2001; Yang et al., 2003). A
comprehensive survey held among 19 large European cities
showed that 13 of them already use some form of remotely
sensed data, three of which use data from satellite platforms
(Schmied and Pillmann, 2003).

Thematic mapping from remotely sensed data is typi-
cally based on image classification. Due to the spectral
heterogeneity of urban surface types and the spatial com-
plexity of urban scenes, VHR image classification of urban
areas often results in land-cover maps with low thematic
accuracy. Major problems that occur in classifying urban
areas are: shadows hiding the underlying land-cover,
spectral mixing due to the presence of transition zones
between two classes or due to multiple class occurrence
within single pixels, within-class heterogeneity due to
varying lighting conditions or nearby solar reflection (e.g.,
on roof windows) or due to differences in the physical
condition (e.g., aging of materials or dust cover) or chemical
composition of materials, and finally (typical for pixel-based
classifications) the salt-and-pepper effect, also referred to as
structural clutter, which makes the resulting map look too
complex and noisy. Specifically for pixel-based classifica-
tions, Jensen (2000) also points out that single-pixel classi-
fiers have difficulties mapping from VHR data because
texture information is, compared with lower resolution
imagery, no longer present within a single pixel, but rather
exists in the relationships between pixels.

Two main approaches can be taken to deal with the
strong spectral-spatial variability in urban VHR imagery:
image segmentation or post-classification processing. The
former is applied before the classification process, and the
latter after an image is classified.

For the segmentation approach, the image is divided into
regions of similar pixels prior to classification. These so-
called image segments do not necessarily have any carto-
graphic meaning and can be considered as image primitives.
Once they are created, they can be attributed to a land-cover
class by any type of classifier. Many techniques of image
segmentation have been developed (Pal and Pal, 1993). The
most common methods to segment a full image are: global
thresholding (a survey of these techniques is given by
Sahoo et al., 1988), region growing algorithms, watershed
segmentation (Wegner et al., 1997), and texture segmentation
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algorithms. The latter can be based on spatial frequencies
(Hofmann et al., 1998), Markov Random Field models
(Panjwani and Healy, 1995), co-occurrence matrices (Haralick
and Shapiro, 1985), wavelet coefficients (Salari and Ling,
1995), or fractal indices (Chaudhuri and Sarkar, 1995).
Recently, multi-resolution image segmentation (Baatz and
Schäpe, 2000) has received quite some attention as it is a part
of the object oriented image classification approach embedded
in the commercial software Definions Professional®. Classifying
image segments will produce a less cluttered image than a
per-pixel classifier, but also leads to information loss due
to generalization. One of the main difficulties in applying
segment-based classification techniques is to obtain a set of
segments that can be unambiguously linked to real-world
objects without over-generalizing the structure of the scene.

As an alternative to segment-based classification, one
may also apply a pixel-based classification approach and
attempt to improve the structure of the obtained classification
by applying dedicated post-classification techniques. In the
post-classification phase of a satellite image classification, the
classified image is manipulated to alter the class-labeling
initially attained by the classifier. This usually entails the
application of context-based rules or filters to the result of a
pixel-based classification.

Contextual information, i.e., implicit information
derived from the relationship between map elements, can
be used for post-classification in different ways. Barr and
Barnsley (1998), for instance, have proposed a reflexive
mapping procedure that operates on individual regions of
a classification, i.e., groups of adjacent pixels of the same
land-cover class, to remove high-frequency structural
clutter in a classified image. In their approach, all regions
below a pre-specified area threshold are merged with the
smallest neighboring region that exceeds the specified
threshold. Simpler, though less efficient techniques for
removing regions that are considered too small from a
classification are: applying a standard majority filter (Gurney
and Townshend, 1983) or a more sophisticated spatial
reclassification technique (Barnsley and Barr, 1996; Gong
and Howarth, 1992; Wharton, 1982) within a moving
window of fixed size. The use of kernel-based approaches,
however, as opposed to a region-based approach, has
a number of disadvantages, including the difficulty of
selecting an optimal kernel size and the fact that the kernel
is an artificial construct that does not refer to the spatial
units that occur in the land-cover scene.

Another way contextual knowledge can be used is
by applying class-dependent rules that assign incorrectly
labeled pixel regions to the correct land-cover class, based
on context and geometry of the region, e.g., an image
interpreter knows from their familiarity with the area that
no cropland is present in the central business district. Small
groups of cropland pixels surrounded by trees must there-
fore rather be part of an urban park and will be assigned to
this land-cover type by applying a knowledge-based rule
specifically designed to deal with these small erroneously
labeled cropland regions. Context may also be introduced in
the post-classification phase in the form of ancillary data
sources that allow us to refine the outcome of the initial
classification. Thomas et al. (2003), for instance, use land-
use data and road centerlines in a raster-based spatial model
to improve the results of a spectral classification. Elevation
data from available digital surface models can also be used
to distinguish paved surfaces from building roofs, even if
both classes have similar spectral characteristics (Van de
Voorde et al., 2004).

Finally, a soft classification algorithm also provides
information that can be useful for post-classification in the
form of fuzzy membership values, class probabilities, or

end-node activations, depending on the type of soft classifier
used. This information can be incorporated into knowledge-
based rules or be used directly as input to another classifier
to reclassify parts of a prior classification, as will be demon-
strated for shadow removal in this research.

Both the post-classification and the segmentation
approach appear to improve the quality of the end-
product. Thomas et al. (2003), for instance, found that
applying a knowledge-driven spatial model on the output
of a pixel-by-pixel classification combined with ancillary
data layers resulted in a higher mapping accuracy. Their
raster-based model also performed better than an image
segmentation approach, although the latter allowed for a
more automated integration of spectral and contextual
information and thus required less analyst input (Thomas
et al., 2003).

In this paper, we propose three straightforward post-
classification techniques that can be applied to any soft
pixel-by-pixel land-cover classification to improve its
thematic accuracy and spatial structure: (a) post-classification
shadow removal to improve the information content of the
classification without conceding too much on accuracy;
(b) rule-based spatial modeling to correct the classification
errors that result from the pixel-by-pixel classification
approach; and (c) structural filtering to reduce the complex-
ity of the obtained land-cover map, and to improve its visual
appearance as well as its thematic accuracy. The three post-
classification enhancement techniques were tested on a
pixel-based neural network classification of several test
zones situated within a QuickBird image covering a spatially
complex urban area.

Study Area and Data
Ghent, Belgium is the second most important city of the
Flemish region. It covers an area of 158.18 square kilometers
with a registered population of about 229,000 (2003). This
corresponds to about 15 percent of the region’s total urban
population. About a third of the municipal area consists of
built-up parcels. Between 1982 and 1999, the built-up area
expanded with 22 percent, which corresponds to an average
annual growth of 34 hectares (Baelus et al., 2003).

The greater city has diverse land-cover and land-use
types. The port area in the north contains mainly industrial
buildings and transport infrastructure. The old city center
consists of high density urban housing and is interwoven
with canals. It is surrounded by low-density residential
areas, agricultural land, and pasture.

Our study area is made up of five test zones with differ-
ent types of land-use (Figure 1): the port area (zone 1), two
zones with low density residential housing (zones 2 and 3),
the old city center (zone 4), and a rural area (zone 5). Cloud-
free image data were extracted for each zone from a Quick-
Bird bundled image product acquired on 23 August 2002.
A reference digital surface model (DSM) was created for
each zone using a set of aerial photographs at a 1:12 000
scale. The DSMs were used in combination with GPS-
measured ground control points to fully 3D ortho-rectify
each image subset. The resulting ortho-rectified images
have a resolution of 0.63 m in the panchromatic channel
and 2.52 m in the multispectral bands. For the purpose of
classification, the multispectral information was resampled
to the 0.63 m resolution of the PAN-image. The multispec-
tral bands were also fused with the PAN band (0.63 m
resolution), using the Intensity Normalized Ratio band per
band (INRBPB) algorithm proposed by Cornet (2003), but
only to facilitate the visual sampling of training and
validation data, not for defining the input bands for the
classification.
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Methods
Classification System
The classification system we adopted consists of seven land-
cover classes: orange and red surfaces, grey surfaces, bare soil,
water, grass, crops, shrub and trees. The class “orange and
red surfaces” represents building materials of these colors
such as red-tiled squares or parking spaces and roof tiles
made of red clay. The “grey surfaces” class is an aggregation
of several urban materials with a grey appearance such as
concrete, asphalt, slate, etc. Preliminary tests taught us that
these surface types could not be spectrally distinguished with
QuickBird’s limited number of spectral bands. For this
reason, we defined the super-class “grey surfaces.”

Shadow was also included as a separate class because
shadows have a specific spectral response. As explained
before, the problem of shadow removal is one of the issues
we decided to deal with in the post-classification stage.

Training and Validation Data
Training data were obtained by selecting 20 training sites for
each spectral class within each of the five test zones. Aerial
photographs (1:12 000), the ortho-rectified satellite images,
and the result of the image fusion were useful tools for
this purpose. Each training site was field-visited to decide
whether it was suitable or not, and changes were made if

necessary. Six actual training pixels belonging to the class
considered were then selected within each of the verified
training sites.

To reduce within-class spectral variability and reduce the
risk of confusion with other classes, the super-class “grey
surfaces” was divided into three spectral subclasses: light,
medium, and dark grey. The purpose of splitting the “grey
surfaces” class into three subclasses was solely for the benefit
of the classification process itself. After the classification and
before the validation, pixels assigned to one of the three grey
subclasses were re-grouped into “grey surfaces.”

To be able to sample training data for each of the three
grey classes (light, medium, and dark), we fell back on a
grey-surface mask. This mask was developed by threshold-
ing the red band and an NDVI image to exclude, respectively,
red and vegetated surfaces. An unsupervised classifier was
then applied on the image pixels within this mask to divide
them into three subclasses of grey: light, medium, and dark.
Training pixels for each subclass were defined by overlaying
the corresponding part of the mask with a set of “grey
surface” training sites that had been visually identified in
the image and verified in the field, and then selecting
training pixels within the overlapping area.

For validation, an exhaustive visual interpretation of
nine small reference sites located within the five test zones
of the study area (see Figure 1) was accomplished. Reference
site selection was based on a proper representation of the
different urban morphologies that characterize the study
area. The edges of the polygons of the visual interpretation
were eroded with a buffer operation to avoid edge effects
during sampling, because while making the visual interpre-
tation, it was often impossible to draw a strict line between
two classes. The buffer was kept very small: only two pixels
on each side of the polygons. A stratified random sample of
validation points was then selected from this interpretation.
We estimated the number of validation points to be sampled
for each class from the class proportions obtained by apply-
ing a simple maximum likelihood classification on all the
test zones. This method was chosen to ensure a proper
representation of all classes in the validation set, according
to their relative prevalence within the study area. Validation
pixels for the shadow class were obtained by visually
inspecting the selected validation pixels of all other classes
on the fused satellite imagery. Validation pixels that fell
inside shadowed areas were re-labeled as shadow. For
validating the effects of the shadow removal on the classifi-
cation, all shadow pixels in the validation set were again re-
assigned to the classes to which these pixels actually belong,
as determined from the exhaustive visual interpretation of
the reference sites.

Table 1 lists the total number of training and validation
pixels per class.
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Figure 1. QuickBird image (23 August 2002) of the city
of Ghent, Belgium (© Digital Globe). The position of the
five cloud-free test zones and the nine visually interpreted
reference sites is indicated.

TABLE 1. NUMBER OF TRAINING AND VALIDATION PIXELS FOR

EACH LAND-COVER CLASS

Class Training Validation

Grey surfaces 594 (light) 508
642 (medium)
594 (dark)

Orange and red surfaces 582 110
Bare soil 119 245
Water 279 120
Grass 698 347
Crops 211 244
Shrub and trees 639 289
Shadows 602 188
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Neural Network Classification
To define and test our post-classification strategies, we
developed a reference land-cover classification with an
Artificial Neural Network (ANN). The network was created
with Neuralware’s NeuralWorks Predict® software, using the
training data to build it. The accuracy of the resulting land-
cover map was assessed with the validation data.

Several networks were trained and tested with two
degrees of freedom: the selected input bands and the ratio
between the amount of test and training cases. The combina-
tions of input bands were grouped into three scenarios: only
the multispectral bands, the multispectral bands with the
PAN band, and the multispectral bands with the PAN and the
local variance for a 3 � 3 moving window calculated on the
PAN. Transformations of these input bands and a selection
according to their relative contribution to the overall
information content were accomplished with NeuralWorks
Predict®. The transformed input variables that were retained
in each scenario to actually perform the classification were
chosen from a set of five mathematical transformations per
original input band using a genetic-based variable selection
algorithm embedded in the software.

The ratio of the amount of training samples used for
learning (i.e., adjusting the network weights) to the amount
of training samples used to determine when to halt the
learning phase (the test data) proved to have a clear impact
on the performance of the network, which was estimated on
the independent validation data. The best result in terms of
overall accuracy was obtained with the PAN, the multispec-
tral channels and the local variance as input bands, and
with a train/test ratio of 70/30 (PCC � 0.83, see Table 3).
The architecture of the network that was trained with this
input consists of 10 input variables, 16 hidden nodes, and
10 output nodes (the land-cover classes). The 10 input
variables are mathematical transformations carried out
on the input bands to scale them between 0 and 1. They
represent the optimal set that was chosen by the genetic
algorithm from a wide range of transformations (linear,
nth power, hyperbolic tangent, . . . ) calculated on each
input variable. The neural network architecture was created
with the cascade-correlation learning algorithm, available in
Predict®. This type of learning algorithm learns very quickly
and the network determines its own size and topology
(Fahlman and Lebiere, 1990).

This best classification result (further referred to as
“original classification” or “initial classification”) was used
as a starting point for developing and testing the post-
classification methods that are proposed in this paper.

The output of the neural network is a soft classification
that provides us with an activation level for each land-cover
class. The activation levels can be interpreted as indicators
of the likelihood that a pixel belongs to a certain class (Foody,
1997) and were used in this study for post-classification
shadow removal (see below).

Post-classification Shadow Removal
Especially in urban areas, shadows cast by trees, houses,
and other buildings cause major difficulties to obtain useful
land-cover maps. Large areas with useful information are
lost because they are hidden by shadows. When they are not
taken into account in the initial classification phase, shad-
owed areas are often classified as water or dark-grey areas.
The amount of shadows that is present in an image of an
urban area is related to the object height, the sensor collec-
tion azimuth, solar elevation angle, and solar azimuth at the
time of acquisition. Specifying the sensor collection azimuth
when placing the image order might be a first step to reduce
the shadow cover. The sensor azimuth should be as close as
possible to the solar azimuth (Sugumaran et al., 2002).

However, even if the aforementioned parameters can be
specified, shadows will still remain a major problem, partic-
ularly in urban areas. Techniques are therefore required to
reduce the amount of shadows present in an image. In a
recent paper, Dare (2005) presents a method for detecting
and removing shadows from VHR images of urban areas.
His shadow detection method is based on thresholding a
density sliced, single band VHR panchromatic satellite image.
Confusion between shadowed and non-shadowed areas
such as water bodies is then filtered out by comparing
the spectral variance of the regions identified as shadow.
Because secondary illumination in shadowed regions makes
many features visible, the spectral variance in those regions
proved to be higher than within water bodies. After the
shadows were identified, Dare (2005) reduced their severity
with a radiometric enhancement for which the parameters
were determined by comparing the histograms of the
shadowed and non-shadowed regions.

To solve the shadow problem in this study, we applied
a different technique: as was mentioned earlier, we dealt
with shadow by considering it as an extra class in the
classification process. After applying the ANN-classifier, we
extracted the pixels identified as shadow from the initial
classification. This allowed us to get a good idea of the
approximate magnitude and location of the shadows within
the five test zones (Table 2). We then re-assigned each pixel
labeled as shadow to the land-cover class we assumed to be
present at the pixel’s location by applying two approaches
that both use the class membership information produced by
the soft classifier, i.e., the activations of the output nodes of
the neural network. In a first attempt, shadow pixels were
simply assigned to their second most likely class, i.e., the
class corresponding to the second highest activated output
node. In a second attempt, we trained a separate neural
network to re-classify all shadow pixels into meaningful
land-cover classes, using the per-class activation levels that
are obtained for each pixel assigned to the shadow class by
the initial network as an input for the second network.
Training data for this second network were obtained by
overlaying the original classification with the small visually
interpreted reference sites. From this overlay, we could
determine the actual class each shadow pixel belonged to
according to the visual interpretation. The second network
thus presents a mapping between the activation levels of the
shadow pixels in the original classification and the target
land-cover classes to which these shadow pixels belong.

Rule-based Classification Enhancement
Pixel regions (i.e., groups of adjacent pixels that have been
assigned to the same class) may be misclassified due to
spectral confusion between various urban surface types.
Starting from the major problems we observed in our
classification, we designed a set of knowledge-based rules
that allowed us to solve many of the problems related to
spectral confusion. Basically, what each rule does, is assign
wrongly labeled regions to another class, depending on their
size and on their spatial relationship with other regions
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TABLE 2. AMOUNT OF SHADOW IN THE INITIAL CLASSIFICATION FOR

EACH OF THE FIVE TEST ZONES

Test Zone Type % Shadow

1 Industrial 2.73%
2 Low-density residential 8.96%
3 Low-density residential 10.40%
4 High-density residential 13.58%
5 Rural 6.09%
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420
70

239
118

280
205

246
125

(e.g., adjacency, inclusion). Some rules also make use of
information on classification uncertainty produced by the
neural network classifier, i.e., the identity of the second
most likely class for the pixels that are part of a region. The
actual definition of the rules is based on expert knowledge
about the mislabeling of regions, which is gathered by
observing systematic error patterns in the classified imagery.
While defining the rules, special care was taken to ensure
that the rule set could be successfully applied under various
morphological conditions. In our study, this meant that the
final set of rules had to be applicable to each of the five test
zones, which were selected based on clear differences in
urban morphology.

Structural Filtering
Structural image clutter, also referred to as the “salt-and-
pepper” effect, is a common by-product of pixel-based
classifications and is particularly conspicuous in high-
resolution scene models, where image pixels are smaller
than the elements in the scene (Strahler et al., 1986). Land-
cover classifications obtained from very-high-resolution
satellite data are a good example. Because of the spectral
variation observed within the boundaries of meaningful
objects constituting the landscape, an individual pixel or
a small group of adjacent pixels might be assigned to a
different class than its neighbors, even though all pixels are
part of the same object. This makes resulting land-cover
maps look noisy or cluttered. In spatially complex environ-
ments such as urban areas, the within-class spectral hetero-
geneity of some surface types exacerbates this problem. Most
of the unwanted clutter can be dealt with by applying rules
based on contextual information. Barr and Barnsley (2000)
make two assumptions about clutter areas: they are typically
small in size, and they are likely to be adjacent to at least
one land-cover parcel that does not represent structural
clutter. Thus, if the clutter region is re-assigned to the land-
cover class of that parcel, it will result in a more meaningful
spatial pattern in that part of the image.

Following the work of Barr and Barnsley (2000), we
applied a structural filter that deals with the most severely
cluttered regions of our classification. First, we determine
regions of adjacent same-class pixels in the classification.
Then, the pixels of each region falling below a certain area
threshold are re-assigned to the largest neighboring region.

In this study, a threshold value of 16 pixels was applied.
We used this filter in combination with the rule-based
procedure outlined above.

Results and Discussion
Classification Result
The quantitative accuracy of the original pixel-based super-
vised ANN classification is presented in Table 3. It was
assessed, for all test zones together, with the independent
validation data. The kappa index-of-agreement (Cohen, 1960;
Rosenfield and Davis, 1979; Hudson, 1987) was calculated
as a measure of the overall classification accuracy. It is
shown at the bottom of the Table together with the percent-
age of correctly classified pixels (PCC). For the original
classification, the kappa index is 0.82, without taking
validation pixels of the shadow class and pixels labeled as
shadow into account. When we did include shadow pixels
in the validation process, we attained a kappa index of 0.80.
The producer’s accuracy (PA) of the shadow pixels is rather
low (66 percent) because quite some shadow pixels from the
validation sample were assigned to land-cover classes such
as water, grey surfaces, and shrub and trees. We can also
learn from the confusion matrix (Table 3) that shifts from
one class to another caused by spectral confusion occur
especially among the vegetation classes (shrub and trees,
grass, crops), from grey surfaces to bare soil and from red
surfaces to grey surfaces and bare soil.

Despite the relatively high classification accuracy, a
visual inspection of the resulting land-cover map points us
at some problems. Plate 1b is an extract of the classification
taken from test zone 3. The major problems can be summed
up as follows: the classified image is excessively noisy (salt-
and-pepper effect); parts of the image lack information due
to the presence of shadow; some pixel regions are wrongly
labeled due to spectral confusion between two or more
surface types; the transition area between some adjacent
land-cover patches consists of mixed pixels, which are
misclassified, and finally, sun-glint effects alter the spectral
response of certain pixels causing them to be wrongly
classified as well. In Plate 1b, the small groups of bright
yellow pixels in the central and northwestern part of the
image are wrongly classified as crops because they form the
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TABLE 3. ERROR MATRIX FOR THE ORIGINAL ANN-CLASSIFICATION, WITH AND WITHOUT VALIDATION OF SHADOW PIXELS

Reference Data

U.A. no U.A. with
Total Shadow Shadow

Grey surfaces 17 0 2 3 0 1 20 463 95% 91%
Red surfaces 5 2 0 1 0 0 5 83 90% 84%
Bare soil 68 16 0 8 0 1 2 334 72% 72%
Water 1 0 0 0 0 0 14 133 99% 89%
Grass 3 2 1 0 17 13 2 318 89% 88%
Crops 0 1 2 0 37 27 0 272 75% 75%
Shrub and 

trees 2 1 1 0 17 22 20 309 85% 80%
Shadow 9 3 0 0 1 0 1 139 90%

Total 508 110 245 120 347 244 289 188 2051

P.A. no 84% 65% 98% 98% 81% 84% 85%
shadow

P.A. with 83% 64% 98% 98% 81% 84% 85% 66%
shadow
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transition zone between grass and trees. The same problem
occurs for the brown bare soil pixels lying between roads
and grass. The purple patches are shadows cast by houses or
trees which hide the underlying land-cover and conse-
quently reduce the information content. Table 2 illustrates
this effect by showing for each test zone the percentages of
shadow pixels in the classification. Especially in zone 4, the

shadows cause a significant loss of information because this
zone lies in the city center, a dense urban area with rela-
tively high buildings.

Shadow Removal
We attempted to solve the shadow problem with the post-
classification shadow removal technique described above.
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Plate 1. (a) Extract of the PAN image © Digital Globe, (b) the original classification, (c) the result after
shadow removal, and (d) the result after rule-based classification enhancement and structural filtering
for part of test zone 3 (low density residential area).
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752

428
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Within the area covered by the nine small reference sites,
a random set of pixels that were classified as shadow was
drawn from the original classification. The real class label
obtained from the exhaustive visual interpretation of the
reference sites as well as the corresponding end-node activa-
tions of the ANN that was applied to obtain the original
classification were extracted for each of these pixels, in order
to obtain training data to build a new network for the
reclassification of shadows. A randomly selected validation
set also consisting of pixels that were classified as shadow,
but independent from the data used for the training, was used
to assess the accuracy of the re-classification procedure.

The results of this validation are shown in Tables 4
and 5. We could not collect sufficient training and valida-
tion samples for shadow falling on “crops.” No error
measures could therefore be calculated for this class. When
we simply allocated the shadow pixels to the class corre-
sponding to the second highest activated end-node in
the original classification, the accuracy calculated on the
independent validation set was only 49 percent (Table 4).
This is not surprising, because for all pixels classified as
shadow, the highest activated end-nodes are mostly those
corresponding to either “dark grey,” “water,” or “shrub and
trees.” Re-assigning shadow pixels to their second most
likely class mostly results in pixels being attributed to one

of these three classes, while in reality shadow pixels may
also belong to other classes. With the ANN-approach (Table 5),
approximately 63 percent of the validation samples were
correctly re-assigned to a new class. When an ANN is used to
re-label the shadow pixels, the pattern of the activation
levels of all classes is taken into account, which evidently
includes implicit information on the actual land-cover
beneath the shadow. This results in a substantial increase
of producer accuracies for classes that are less spectrally
confused with shadow, like “red surfaces,” “bare soil,” and
“grass.” For “water” and “shrub and trees” the producer
accuracy decreases, yet the user accuracy is improved.

The network obtained for re-labeling shadow pixels was
then applied to all pixels that had been assigned to the
shadow class in the original classification. Plate 1c shows
the classification result for the extract of test zone 3, after
pixels that were classified as shadow have been re-assigned.
Table 6 presents the confusion matrix for the classification
without shadows. The kappa index drops from 0.82 to 0.79,
yet one should keep in mind that the information content of
the end-product is substantially increased. While the kappa
of 0.82 only refers to the part of the area that is not assigned
to the shadow class by the original classifier, the kappa of
0.79 refers to the entire area covered by the classification.
It is obvious that the re-classification of pixels originally
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TABLE 4. ERROR MATRIX FOR SHADOW RE-CLASSIFICATION WITH SECOND PROBABILITIES

Reference Data

Total U.A.

Grey surfaces 394 0 128 118 0 70 1103 36%
Red surfaces 3 0 0 3 0 0 78 92%
Bare soil 1 52 3 15 0 11 84 2%
Water 500 188 67 172 0 23 1689 44%
Grass 0 0 0 0 0 0 0 0%
Crops 1 1 0 10 11 10 33 N/A
Shrub and trees 26 49 6 15 165 0 1013 74%

Total 924 756 75 895 484 0 866 4000

P.A. 43% 10% 3% 83% 0% N/A 87% PCC: 49% 
kappa: 0.35
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TABLE 5. ERROR MATRIX FOR ANN SHADOW RE-CLASSIFICATION

Reference Data

Total U.A.

Grey surfaces 129 0 76 44 0 21 698 61%
Red surfaces 82 0 28 29 0 36 660 73%
Bare soil 106 28 110 103 0 8 409 13%
Water 206 65 10 4 0 11 931 68%
Grass 77 24 8 27 0 92 432 47%
Crops 0 0 0 0 0 0 0 N/A
Shrub and trees 25 25 3 19 100 0 870 80%

Total 924 756 75 895 484 0 866 4000

P.A. 46% 64% 72% 71% 42% N/A 81% PCC: 63% 
kappa: 0.54
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labeled as shadow into their actual type of land-cover as
identified in the field introduces an additional uncertainty,
which explains the slight drop in the kappa value. However,
taking into account that all shadow areas are removed from
the classification and have been replaced by actual land-
cover classes, the result may be considered as quite success-
ful. It should be pointed out that for the water class there is
a drop in user’s accuracy from 99 percent to 79 percent.
This can be explained by the still quite high proportion of
shadow pixels on dark grey surfaces being reclassified as
water by the neural network used for shadow reclassifica-
tion. This also explains the drop in producer’s accuracy for
“grey surfaces” compared to the original classification. The
erroneous assignment of shadow pixels to the water class
can be clearly observed in Plate 1c. Correcting for these and
other thematic errors was achieved by rule-based enhance-
ment of the classification output (see below).

Knowledge-based Classification Enhancement and Structural Filtering
Table 7 shows the 10 knowledge-based rules in the order we
have applied them on each of the five test zones. The rules
can be divided into four groups:

• (a) Rules that put a threshold on a region’s size to determine
whether its label should be changed into an adjacent region’s
label (rules 4 and 7);

• (b) Rules that put a threshold on a region’s size to determine
whether its label should be changed into the label of the
neighboring region with which it shares the largest border
(rules 1 and 8);

• (c) Rules that change a region’s label into the label of the
region that completely surrounds it (rule 10);

• (d) Rules that use the second most probable class of a
region’s pixels, as indicated by the classifier, to

• change the label of some of these pixels into the label of
one of the neighboring regions (rules 2, 3, and 9);

• change the label of all pixels that belong to the region into
the label of one of the neighboring regions (rules 5 and 6).

Rule 1 was used to correct small patches that were
misclassified as “water” mostly because of errors introduced
by shadow-reclassification or confusion between “shadow”
and “water” (see above).

A more severe problem in the classification of the Ghent
area is the confusion between “bare soil” and “red surfaces.”
First of all, some parts of red-colored roofs were incorrectly
identified as “bare soil” by the classifier. Because these
erroneous “bare soil” patches are generally small in size, a
rule of type (d), combining area thresholds and second
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TABLE 7. OVERVIEW OF THE 10 KNOWLEDGE-BASED RULES IN THE

ORDER THEY WERE APPLIED

• (1) �water� regions smaller than 250 pixels are assigned to the
neighboring region with which they share the largest boundary

• (2) pixels belonging to �bare soil� regions smaller than 500 pixels
are assigned to �grey surfaces� if their second probability is �grey
surfaces� and their region is adjacent to a �grey surfaces� region
which in turn is larger than 100 pixels

• (3) pixels belonging to �bare soil� regions smaller than 500 pixels
are assigned to �red surfaces� if their second probability is �red
surfaces� and their region is adjacent to a �red surface� region
which in turn is larger than 100 pixels

• (4) �red surface� regions smaller than 150 pixels are assigned to
�grey surfaces� if they are adjacent to a region of this class that
is larger than 500 pixels

• (5) if the majority of the pixels inside a �red surfaces� region has
�bare soil� as its second most probable class AND if this region is
adjacent to �bare soil� regions with a total area of at least 12,000
pixels, then the �red surfaces� region is assigned to �bare soil�

• (6) if the majority of the pixels inside a �grey surfaces� region
has �bare soil� as its second most probable class AND if this
region is adjacent to �bare soil� regions with a total area of at
least 12,000 pixels, then the �grey surfaces� region is assigned to
�bare soil�

• (7) �red surfaces� regions larger than 27,000 pixels are changed
into �bare soil�

• (8) �shrub and trees� regions smaller than 175 pixels that are
adjacent to �crops� or �grass� are changed into one of these
two classes, depending on the class with which they share the
largest boundary

• (9) pixels belonging to �crops� regions that are adjacent to �shrub
and trees� or �grass� and that are smaller than 4,500 pixels, are
assigned to their second most probable class if this class is either
�shrub and trees� or �grass�

• (10) �bare soil� regions that are completely surrounded by
�water� are assigned to �water�

L
an

d
-c

ov
er

 
m

ap
 a

ft
er

 
sh

ad
ow

 r
em

ov
al

G
re

y 
S

u
rf

ac
es

R
ed

 S
u

rf
ac

es

B
ar

e 
S

oi
l

W
at

er

G
ra

ss

C
ro

p
s

S
h

ru
b 

an
d

 
T

re
es

TABLE 6. ERROR MATRIX FOR THE CLASSIFICATION AFTER SHADOW REMOVAL

Reference Data

Total U.A.

Grey surfaces 18 0 3 3 0 3 498 95%
Red surfaces 8 2 1 1 0 1 93 86%
Bare soil 74 19 0 9 0 2 343 70%
Water 31 0 0 0 0 0 151 79%
Grass 16 3 1 0 17 18 340 84%
Crops 0 2 2 0 37 29 275 75%
Shrub and trees 3 4 1 0 18 22 351 86%

Total 603 126 245 124 353 244 356 2051

P.A. 78% 63% 98% 97% 81% 84% 85% PCC: 83% 
kappa: 0.79

probabilities (rule 3), enabled us to correct wrongly classi-
fied parts of roofs while leaving correctly labeled “bare soil”
pixels in other parts of the image unchanged. Plate 1d
illustrates this rule’s effectiveness. It clearly shows how
parts of red roofs which were wrongfully classified as “bare
soil” (Plate 1b and 1c) are re-assigned to “red surfaces”
(Plate 1d). This rule introduces only a limited amount of
new errors by incorrectly changing small bare soil patches
into red surfaces.

Another part of the “bare soil” and “red surfaces”
confusion is the presence of red surface patches inside
larger bare soil regions (not shown on the Plate). Many of
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these apparently small red patches are connected and form
large regions with highly irregular boundaries. Rule 5 was
applied to solve this problem. It looks at the region’s neigh-
borhood (regions to be transformed should be adjacent to
large patches of bare soil) and the second most probable
class of the region’s pixels as identified by the classifier
(should be bare soil). Sometimes entire fields of “bare soil”
are wrongly assigned to the “red surfaces” class. Rule 7
deals with this type of confusion. It uses a threshold that
exceeds the size of the largest red colored roof regions found
in the area. As such, there is no risk of introducing new
errors this way.

Rule 2 is similar to rule 3, but removes erroneous bare
soil patches found within “grey” regions, e.g., on asphalted
roads or on grey roofs (see Plate 1c). After the application
of rule 2, the roads belong nearly exclusively to the “grey
surfaces” class (Plate 1d). Similarly, rule 4 removes very
small “red surfaces” clumps that occur in larger grey areas
by applying an area threshold both on the region to be
changed and the target region. These small red patches are
often caused by cars present on asphalted or concrete roads.
Rule 6 works in a similar fashion as rule 5, and solves
confusion between grey surfaces and bare soil in non-
residential areas.

Rules 8 and 9 deal with confusion between “crops,”
“grass,” and the “shrub and trees” class. In the small agri-
cultural field in the western part of Plate 1b, for instance,
some pixels are classified as “shrub and trees” instead of
crops, making the field look cluttered. After applying rule 8,
this noise is removed and the field becomes more homoge-
neous (Plate 1d). Rule 9 deals with the problem of mixed
pixels in the transition zones between “grass” and “shrub
and trees” that are misclassified as “crops.” Such misclassi-
fied patches are generally small, so again an area threshold
is applied. A second condition for re-labeling is that the
region needs to be adjacent to either “grass” or “shrub and
trees,” or to both. We then re-assign pixels in the region
to the second most likely class, if this class is “grass” or
“shrub and trees.” If this last condition is not fulfilled, the
pixel is left unchanged.

Finally, the type (c) rule in the set (rule 10) deals with
structural clutter in large water bodies. Indeed, a very large
number of small “bare soil” patches appeared within the
waterways near the harbor (test zone 1). Because such
patches are fully enclosed by regions of the “water” class,
a simple rule could be defined to correct for this type of
classification error.

The 10 post-classification rules were applied to the land-
cover classification of the five test zones in the order specified
in Table 7, after shadows had been removed. Before and after
applying the rules, a structural filter assigning regions with a
size smaller than 16 pixels (6.35 m2) to the largest neighboring
region was applied to reduce image clutter. An extract of the
result obtained is shown in Plate 1d. Using the same valida-
tion set as in the previous step, we obtained a kappa index
of 0.86 (PCC of 88 percent), a substantial improvement of
classification accuracy compared to the classification result
obtained after shadow removal (kappa � 0.79, PCC � 83
percent). Table 8 shows the confusion matrix. After shadow
removal, bare soil was the class with the lowest user’s
accuracy because of the confusion with red and grey surfaces
(see Table 6). After post-classification, the user’s accuracy for
bare soil increases from 70 percent to 75 percent. For red
surfaces there is also a slight improvement in the user’s
accuracy (from 86 percent to 89 percent). The confusion
between crops and other vegetation classes is also greatly
reduced. User’s accuracy for crops increases from 75 percent
to 91 percent, which proves that the knowledge-based rule
used to reclassify the crop pixels in the transition zones
between trees and grass performs well. We also notice a clear
improvement for the “shrub and trees” class (�8 percent).
Many of the shadow pixels that were erroneously assigned to
the water class in the phase of shadow removal (see above)
were successfully corrected by rule 1, increasing the user’s
accuracy for water from 79 percent to 89 percent. Producer’s
accuracies are improved for all classes.

Because we defined our rules starting from the actual
errors, we observed in a particular classification, one should
keep in mind that they are not unique in the sense that
classification of other areas and/or the use of another
classification key would require a different set of rules. Even
for the same classification, a similar improvement might
have been obtained with a different rule set. The order in
which the rules are applied is also important because
applying one rule to solve a particular problem might
introduce new errors elsewhere in the image that need to be
solved with yet another rule. The major advantage of rule-
based post-classification, however, is its transparency and
relative simplicity, which makes it possible for non-image
specialists to use it for their own purposes. The fact that the
rules we developed for our case study work well on five
separate test zones, each characterized by different types of
urban morphology, proves that the rules can, at least to a
certain extent, be generally defined. On the other hand, it
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TABLE 8. ERROR MATRIX FOR THE CLASSIFICATION AFTER SHADOW REMOVAL, RULE-BASED CLASSIFICATION ENHANCEMENT AND STRUCTURAL FILTERING

Reference Data

Total U.A.

Grey surfaces 24 0 2 5 0 2 542 94%
Red surfaces 6 0 1 1 0 2 95 89%
Bare soil 61 8 0 9 0 1 322 75%
Water 15 0 0 0 0 0 136 89%
Grass 8 4 0 0 25 23 368 84%
Crops 0 1 2 0 16 2 240 91%
Shrub and 4 4 0 0 14 0 348 94%

trees

Total 603 126 245 124 353 244 356 2051

P.A. 84% 67% 99% 98% 87% 90% 92% PCC: 88% 
kappa: 0.86
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should be mentioned that the definition of a proper set of
rules requires a considerable effort from the operator. To
reduce the amount of user intervention needed to define
appropriate post-classification rules, one might think of
developing an automated or semi-automated approach that
is able to generate re-classification rules when provided with
a certain classification and with additional knowledge on
the spatial characteristics of classification error. This is
clearly a topic for future research.

Conclusions
The prime objective of this work was to define a suitable
strategy to produce an accurate land-cover classification for
an urban area using Very High Resolution satellite data. Post-
classification processing was applied to meet this goal by
reducing some of the major problems of pixel-based classifi-
cations in a complex urban setting: the presence of shadows,
misclassifications due to spectral confusion between classes,
and structural clutter. An initial pixel-based classification of
five test zones in and around the city of Ghent, Belgium was
carried out with an artificial neural network classifier. The
kappa index-of-agreement obtained with this approach was
0.82, with an individual class user’s accuracy ranging from
0.72 to 0.99. The poorest performing class was bare soil,
which was mostly confused with red and grey surface types.
After applying an ANN-based shadow removal technique, the
kappa index dropped slightly to 0.79. This appears to be
only a slight trade-off, considering the fact that shadows hide
between 3 percent and 14 percent of the area of the different
test zones. The knowledge-based post-classification rules and
the structural filter we applied to deal with misclassifications
and structural clutter not only improved the visual appear-
ance of the classification significantly, they also increased
the overall kappa index to 0.86.

The methods described in this paper will be applied on
two morphologically different Belgian cities in the near
future, and will also be used to produce detailed reference
classifications for sub-pixel classification of Landsat ETM�
data. Future research needs to consider developing auto-
mated procedures that are able to define rules directly from
a given classification, using knowledge on image context
and classification error.

Acknowledgments
The authors wish to express their gratitude to Marc Binard of
SURFACES (Université de Liège) and to Nathalie Stephenne
of IGEAT (Université Libre de Bruxelles) for their part in the
collection of training and validation data for the land-cover
classification. They also wish to thank Dennis Devriendt
(Geography Department, Ghent University) for building the
DSM’s required for orthorectification. Belgian Science Policy
is gratefully acknowledged for providing the funds for this
research. The authors also would like to thank the anony-
mous reviewers for their comments.

References
Arnold, C.A., Jr., D.L. Civco, S. Prisloe, J.D. Hurd, and J. Stocker,

2000. Remote sensing-enhanced outreach education as a
decision support system for local land use officials, Photogram-
metric Engineering & Remote Sensing, 66(10):1251–1260.

Baatz, M., and A. Schäpe, 2000. Multiresolution segmentation – An
optimization approach for high quality multi-scale image
segmentation, Angewandte Geographische Informationsverar-
beitung XII, Beiträge zum AGIT-Symposium - Salzburg 2000
(J. Strobl, T. Blaschke, and G. Griesebner, editors), Herbert
Wichmann Verlag, Karlsruhe, Germany, pp. 12–23.

Baelus J., G. Vloebergh, and J. De Greef, 2003. Ruimtelijk structuur-
plan Gent – Informatief gedeelte, Stad Gent, Ghent, Belgium,
210 p.

Barnsley, M.J., and S.L. Barr, 1996. Inferring urban land use from
satellite sensor images using kernel-based spatial reclassifica-
tion, Photogrammetric Engineering & Remote Sensing, 62(8):
949–958.

Barr, S.L., and M.J. Barnsley, 2000. Reducing structural clutter in
land-cover classifications of high spatial resolution remotely-
sensed images for urban land use mapping, Computers and
Geosciences, 26(4):433–449.

Barr, S.L., and M.J. Barnsley, 1998. Inferring urban land use from
very high spatial resolution remotely-sensed images using
syntactic pattern recognition techniques, Proceedings of ECO
BP’98: International Symposium on Resource and Environmen-
tal Monitoring, International Archives of Photogrammetry and
Remote Sensing, Commission VII, 01–04 September, Budapest,
Hungary, pp. 315–322.

Chaudhuri, B., and N. Sarkar, 1995. Texture segmentation using
fractal dimension, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(1):72–77.

Cohen, J., 1960. A coefficient of agreement for nominal scales,
Educational and Psychological Measurement, 20(1):37–46.

Cornet, Y., C. Schenke, S. de Bethune, M. Binard, and F. Muller,
2003. Stratégies de fusion d’images P/XS basées sur les
principes colorimétriques et l’Égalisation de Statistiques
Locales, Bulletin SFPT, French Society for Photogrammetry
and Remote Sensing, 169 (2003–1):35–45.

Dare, P.M., 2005. Shadow analysis in high-resolution satellite
imagery of urban areas, Photogrammetric Engineering & Remote
Sensing, 71(2):169–177.

European Commission - Environment DG, 2004. Towards a
Thematic Strategy on the Urban Environment, Communication
from the Commission to the Council, the European Parliament,
the European Social and Economic Committee and the
Committee of the Regions, European Publication Office,
Luxemburg, 56 p.

Fahlman, S.E., and C. Lebiere, 1990. The Cascade-Correlation Learning
Architecture, Advances in Neural Information Processing Systems
2 (D.S. Touretzky, editor), Morgan Kaufmann, San Mateo,
California, pp. 524–532.

Flanagan, M., and D.L. Civco, 2001. Subpixel impervious surface
mapping, Proceedings of the ASPRS 2001 Annual Conference,
23–27 April, St. Louis, Missouri, American Society for
Photogrammetry and Remote Sensing, Bethesda, Maryland,
unpaginated CD-ROM.

Foody, G.M., 1997. Fully fuzzy supervised classification of land-
cover from remotely sensed imagery with an artificial neural
network, Neural Computing and Applications, 5(4):238–247.

Gong, P., and P.J. Howarth, 1992. Land-use classification of SPOT
HRV data using a cover-frequency method, International Journal
of Remote Sensing, 13(8):1459–1471.

Gurney, M.C., and J.R.G. Townshend, 1983. The use of contextual
information in the classification of remotely sensed data,
Photogrammetric Engineering & Remote Sensing, 49(1):55–46.

Haralick, R.M., and L.G. Shapiro, 1985. Image segmentation
techniques, Computer Vision, Graphics, and Image Processing,
29(1):100–132.

Hofmann, T., J. Puzicha, and J. Buhmann, 1998. Unsupervised
texture segmentation in a deterministic annealing framework,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(8):803–818.

Hudson, W., 1987. Correct formulation of the Kappa coefficient,
Photogrammetric Engineering & Remote Sensing, 53(4):421–422.

Jensen, J., 2000. Remote Sensing of Environment: An Earth Resource
Perspective, Prentice Hall, Upper Saddle River, New Jersey, 544 p.

Pal, N.R., and S.K. Pal, 1993. A review on image segmentation
techniques, Pattern Recognition, 26(9):1277–1294.

Panjwani, D., and G. Healey, 1995. Markov random field models for
unsupervised segmentation of textured color images, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
17(10):939–954.

1026 Sep t embe r 2007 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

04-079  8/14/07  8:57 AM  Page 1026



Pillmann, W., and K. Kellner, 2002. Green space inventory in the
City of Vienna: A BiotopMonitoring system based on remote
sensing methods, Urban Forests and Trees, Proceedings No. 1,
COST Action E12, European Communities, Office for Official
Publications, Luxembourg.

Ries, C., W. Pillmann., K. Kellner, and P. Stadler, 2002. Urban green
space management information - Processing and use of remote
sensing images and scanner data, Proceedings of Environmental
Informatics 2002: 16th International Conference on Informatics
for Environmental Protection, 25–27 September, Vienna,
Austria, pp. 503–510.

Rosenfield, A., and L.S. Davis, 1979. Image segmentation and image
models, Proceedings of the IEEE, 67(5):764–772.

Sahoo, P.K., S. Soltani, and A.K.C. Wang, 1988. A survey of thresh-
olding techniques, Computer Vision, Graphics, and Image
Processing, 41(2):233–260.

Salari, E., and Z. Ling, 1995. Texture segmentation using hierarchi-
cal wavelet decomposition, Pattern Recognition, 28(12):
1819–1824.

Schmied, A., and W. Pillmann, 2003. Tree protection legislation in
European cities, Urban Forestry & Urban Greening, 2(2):
115–124.

Strahler, A.H., C.E. Woodcock, and J.A. Smith, 1986. On the nature
of models in remote sensing, Remote Sensing of Environment,
20:121–139.

Sugumaran, R., D. Zerr, and T. Prato, 2002. Improved urban land-
cover mapping using multi-temporal IKONOS images for local
government planning, Canadian Journal of Remote Sensing,
28(1):90–95.

Thomas, N., C. Hendrix, and R.G. Congalton, 2003. A comparison
of urban mapping methods using high-resolution digital
imagery, Photogrammetric Engineering & Remote Sensing,
69(9):963–972.

UNCHS - United Nations Centre for Human Settlements – UNCHS,
2001. The State of the World’s Cities Report 2001, Nairobi,
Kenya, 125 p.

Van de Voorde, T., W. De Genst, F. Canters, N. Stephenne, E. Wolff,
and M. Binard, 2004. Extraction of land use/land-cover related
information from very high resolution data in urban and
suburban areas, Remote Sensing in Transition (R. Goossens,
editor), Proceedings of the 23rd Symposium of the European
Association of Remote Sensing Laboratories, 02–05 June 
2003, Ghent, Belgium, Millpress Rotterdam, Netherlands, 
pp. 237–244.

Wegner, S., H. Oswald, and E. Fleck, 1997. Segmentierung mit der
Wasserscheidentransformation, Spektrum der Wissenschaft,
6:113–115.

Wharton, S.W., 1982. A contextual classification method for
recognizing land-use patterns in high-resolution remotely
sensed data, Pattern Recognition, 15(4):317–324.

Yang, L., C. Huang, C.G. Homer, B.K. Wylie, and M.J. Coan, 2003.
An approach for mapping large-area impervious surfaces:
Synergistic use of Landsat-7 ETM� and high spatial resolution
imagery, Canadian Journal of Remote Sensing, 29(2):230–240.

(Received 22 June 2005; accepted 03 October 2005; revised
10 February 2006)

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Sep t embe r  2007 1027

04-079  8/14/07  8:57 AM  Page 1027




