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Abstract 
Many organizations require accurate intermediate-scale land- 
cover information for many applications, including modeling 
nutrient and pesticide runoff, understanding spatial patterns 
of biodiversity, land-use planning, and policy development. 
While many techniques have been successfully used to clas- 
sify land cover in relatively small regions, there are substan- 
tial obstacles in applying these methods to large, multiscene 
regions. The purpose of this study was to generate and eval- 
uate a large region land-cover classification product using a 
multiple-layer land-characteristics database approach. To 
derive land-cover information, mosaicked Landsat thema tic 
mapper (TM) scenes were analyzed in conjunction with digi- 
tal elevation data (and derived slope, aspect, and shaded re- 
liefl, population census information, Defense Meteorological 
Satellite Program city lights data, prior land-use and land- 
cover data, digital line graph data, and National Wetlands 
Inventory data. Both leaf-on and leaf-off TM data sets were 
analyzed. The study area was U.S. Federal Region 111, which 
includes the states of Pennsylvania, Virginia, Maryland, Del- 
aware, and West Virginia. 

The general procedure involved (1) generating mosaics 
of multiple scenes of leaves-on TM data using histogram 
equalization methods; (2) clustering mosaics into 100 spec- 
tral classes using unsupervised classification; (3) interpreting 
and labeling spectral classes into approximately 15 land- 
cover categories (analogous to Anderson Level 1 and 2 clas- 
ses) using aerial photographs; (4) developing decision- 
making rules and models using from one to several ancillary 
data layers to resolve confusion in spectral classes that rep- 
resented two or more targeted land-cover categories; and (5) 
incorporating data from other sources (for example, leaf-off 
TM data and National Wetlands Inventory data) to yield a fi- 
nal land-cover product. Although standard accuracy assess- 
ments were not done, a series of consistency checks using 
available sources of land-cover information were conducted 
to evaluate the effectiveness of this approach for generating 
accurate land-cover information for large regions. 

Introduction 
Many agencies, including the U.S. Environmental Protection 
Agency, the U.S. Forest Service, Bureau of Land Manage- 
ment, National Oceanic and Atmospheric Administration, 
the U.S. Geological Survey (uSGS), state governments, and 
environmental groups need up-to-date intermediate-scale 
land-cover data (e.g., spatial resolution of 1 hectare or bet- 
ter). Potential uses for such land-cover data are many and 
varied, and include assessing ecosystem status and health, 
modeling nutrient and pesticide runoff, understanding spa- 

Any use of trade, product, or firm names is for descriptive purposes 
only and does not imply an endorsement by the U.S. Government. 

Hughes-STX Corporation, U.S. Geological Survey, EROS Data 
Center, Sioux Falls, SD 57198 vogel@edcmail.cr.usgs.gov. 

tial patterns of biodiversity, land-use planning, and develop- 
ing land management policy. Despite the need for current 
land-cover data, much of the intermediate-scale spatial land- 
cover data now available for the United States are outdated 
and are of questionable accuracy. The most recent intermedi- 
ate-scale land-cover data set generated for the conterminous 
United States [land-use and land-cover (LUDA) data] was de- 
veloped by the USGS (1990) in the 1970s by interpreting 
high-altitude aerial photographs. Although this data set is 
probably still adequate for some applications, many land- 
cover changes have occurred since the data set was com- 
piled. More recently, a land-cover classification for the 
conterminous United States using 1-km advanced very high 
resolution radiometer data (Loveland et al., 1991; Brown et 
al., 1993) was developed for use by the global change re- 
search community. However, this data set is spatially too 
coarse for assessing many of the issues of national concern. 

The main objective of this project was to generate a gen- 
eralized, consistent, seamless, and reasonably accurate land- 
cover data layer for U.S. Federal Region 111, which includes 
the States of Pennsylvania, Maryland, Delaware, Virginia, 
and West Virginia. One goal of the study was to create a 
land-cover data set appropriate for a wide variety of uses. In 
addition to exploring various methods for efficiently deriving 
large-area classifications, a major thrust of this project was to 
evaluate the potential and practicality of generating an inter- 
mediate-scale land-cover data set for the conterminous 
United States. 

Met hods 
Study Region 
The study region covers more than 30 million hectares in the 
eastern United States (Plate 1). The majority of the region is 
densely forested; other features within the region include a 
variety of types of wetlands, agricultural lands, water, and 
numerous urban areas. The terrain of the region (Plate 2) 
ranges from flat (especially along coastal areas in the eastern 
portion of the region) to mountainous (most notably in the 
Appalachian Mountain Range in the west). The region con- 
tains nine different ecoregions as defined by Omernik (1987). 

Data sources 
The primary source of data for this project was leaves-on 
(summer) Landsat thematic mapper (TM) data acquired in 
1991, 1992, and 1993, collected for the Multiresolution Land 
Characteristics consortium (Loveland and Shaw, 1996). Data 
sets were de-striped, and terrain corrected using 3-arc-second 
digital terrain elevation data set (DTED) data and ground con- 
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Plate 1. Landsat thematic mapper mosaic of Federal Region Ill produc 
ing bands 5, 4, and 3 in the order of red, green, and blue. Data repre-- 
summer (leaves-on) conditions. 
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Plate 2. Shaded-relief data set of Federal Region Ill derived from 3arc-sec- 
ond Digital Terrain Elevation Data set data. 



trol points with a root-mean-square error of less than one 
pixel (30 metres). Data sets were projected to Lambert Azi- 
muthal coordinates. Additionally, leaf-off TM data sets were 
analyzed. Although most of the leaves-off data sets were ac- 
quired in spring, a few were from late autumn because of the 
difficulties in acquiring cloud-free TM data during springtime 
in the eastern United States. In total, 45 TM scenes were used 
(Table 1). 

Other intermediate-scale spatial data were used, includ- 
ing DTED (U.S. Geological Sunrey, 1993) and derivative DTED 
products (including slope, aspect, and shaded relief (Plate 
2)), population-density data (Plate 3: Bureau of the Census, 
1991a; Bureau of the Census, 1991b; Bureau of the Census, 
1992; Hitt, 1992), Defense Meteorological Satellite Program 
city lights data (Plate 4: Elvidge et al., 1997), LUDA data 
(Plate 5), and National Wetlands Inventory (NW) data (Plate 
6). Political boundary data (county level) derived from Digi- 
tal Line Graph data (U.S. Geological Survey, 1990) were also 
used for consistency checks. 

Classification Procedure 
The general procedure was to (1) mosaic the summer TM 
scenes and classify them using an unsupervised classification 
algorithm, (2) interpret and label classes into modified Na- 
tional Oceanic and Atmospheric Administration (NOAA) 
Coastal Change Analysis Program (c-CAP) classes (Klemas e f  
al., 1993; Dobson et al., 1995: see Table 2) using aerial pho- 
tographs, (3) resolve confused classes using the appropriate 
ancillary data source(s), and (4) incorporate land-cover infor- 
mation from leaf-off TM data and NWI data to refine and aug- 
ment the basic classification developed above. 

The region was divided into halves for separate analysis. 
This was done to keep the amount of data reasonable and 
because scenes from the west half of the region were ac- 
quired during late summer and early autumn, whereas 
scenes horn the east half of the region were acquired during 
early summer. Classification results derived from mosaics 
comprised of both early summer and late summer scenes 
might be difficult to interpret and label because of pro- 
nounced interscene phenological differences. 

For mosaicking purposes, a "master" scene (Homer et 
al., 1997) was selected, and regions of spatial overlap with 
adjacent "slave" scenes were used to normalize digital data. 
From these zones of overlap, histograms of digital values 
from the slave scenes were adjusted to match the histogram 
brightness values of the master image on a band-by-band ba- 
sis. Prior to normalization, areas with clouds and water were 
masked out, such that normalization was performed solely 
using digital data from areas dominated by land cover (i.e., 
the primary focus of this work). Once a slave image was ra- 
diometrically matched to the master, it in turn became a 
master for it's adjacent scenes. While it is recognized that 
there may be disagreement with the logic of using multis- 
cene mosaics for classification purposes, it should be noted 
that other investigators have used mosaics successfully to de- 
rive large area land-cover data sets in Utah (Edwards et al., 
1995; Homer et al., 1997). In the Utah work, however, the 
techniques employed were different from ours, with the his- 
tograms of master-slave images being adjusted by maintain- 
ing histogram shape while altering relative position or bias. 
While we believe that the mosaicking procedure employed 
in this study was very effective for the purposes the static 
classification analysis performed, it should be noted that the 
procedure may not be appropriate for other types of analy- 
ses, such as change detection. 

Mosaicked scenes were clustered into 100 spectrally dis- 
tinct classes using the CLUSTER algorithm developed at Los 
Alamos National Laboratory (Kelly and White, 1993; Benja- 
min et a]., 1996). Classification was accomplished using TM 

TABLE 1. MULTIRESOLUTION LAND CHARACTERISTICS LANDSAT THEMATIC MAPPER 
DATA SETS USED TO DEVELOP FEDERAL REGION Ill DATA SET. 

PathIRow Leaf-Off Date Leaf-On Date 

bands 3 (0.63 to 0.69 pm), 4 (0.76 to 0.90 km), 5 (1.55 to 
1.75 pm), and 7 (2.08 to 2.35 pm); for some scenes, bands 1 
(0.45 to 0.52 pm) and 2 (0.52 to 0.60 pm) were affected by 
too much haze to use with confidence. Previous work has in- 
dicated that relatively little unique land-cover information is 
derived by using greater numbers of clusters (Vogelmann et 
al., 1996), and it was decided that 100 clusters would likely 
capture most of the regional land-cover variability that could 
be derived from the leaf-on summer TM data. Clusters were 
assigned into modified C-CAP classes (Table 2), which are 
analogous to Anderson level 1 and 2 land cover classes (An- 
derson et al., 1976), using National High Altitude Photogra- 
phy (NHAP) program aerial photographs as reference 
information. 

Almost invariably, the individual spectral clusters de- 
rived from classification were confused between or among 
two or more of the targeted land-cover classes. Separation of 
spectral classes into more meaningful land-cover units was 
accomplished using ancillary data that were rasterized to the 
same pixel size (30 m) and using the same projection param- 
eters (Lambert Azimuthal) as used for the imagery. Slope, as- 
pect, and shaded relief data sets were derived from the DTED 
data using standard raster-based image processing software, 
whereas the NWI, LUDA, and population census block group 
data layers were obtained by rasterizing and then combining 
available vector-based coverages. 

Briefly, for a given confused spectral class, digital values 
of the various ancillary data layers were compared (1) to de- 
termine which data layers were the most effective for split- 
ting the confused class into the appropriate land-cover units, 
and (2) to derive the appropriate thresholds for splitting the 
classes. Models were then developed using one to several 
data sets to split each confused class into the desired land- 
cover categories. In this study, the ancillary data layers used 
for splitting of classes were elevation, slope, aspect, shaded 
relief, population density, city lights, LUDA, and two TM-de- 
rived vegetation indices (normalized difference vegetation in- 
dex and the TM band 514 ratio). It was felt that all data layers 
chosen characterize certain land-cover features that might 
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Plate 5. Land-use and landcover data. 
Plate 6. National Wetlands Inventory data, showing where digital wetlands in- 
formation is available for Federal Region Ill. 



Plate 7. Sample spectral profile illustrating use of ancil- 
lary data for splitting a spectral cluster that is spectrally 
coincident with both deciduous forest and low intensity 
developed features. In this profile, it can be seen that 
population density, city lights, slope, elevation, and 
shaded relief are appropriate for discriminating these two 

not be readily obtainable ;From classification of TM imagery. 
The two vegetation indices were selected because both have 
been found to be useful in discriminating various land-cover 
features in other studies [e.g., Vogelmann and Rock, 1969; 
Yogelmann, 1990; Loveland et al., 1991; Brown et ul., 1993) 
and, unlike the imagery used for clustering the data, contain 
information that is largely independent of slope and aspect 
variables. 

O"ccasionalIy, we have found that "raw" hand data have 
been useful for model development. For instance, we have 
found that TM band 3 is occasionally useful for splitting clas- 
ses, Although we dld not use TM band 7 for class splitting 
operations, subsequent analyses have shown the band also to 
be sometimes useful for reducing confusion, and we are cur- 
rently using it in other land-cover mapping projects. 

Of the ancillary data layers used, those found to be geD. 
erally ineffective for separating confused classes included as- 
pect and the two vegetation indices; consequently, these 
were seldom used in the models. Moderate success was 
achieved using slope information in model development. 
The shaded-relief data set, which contains elements of both 
slope and aspect variables, was found to be much more pow- 
erful for eliminating confusion than either slope or aspect 
data layms used separately. The shaded-relief data set was 
produced using solar elevation and azimuth values @at ap- 
proximated solar conditions during times of TM data acquisi- 
tion. This data set was scaled from 1 to 255 such that low 
digital vaIues represent shaded areas on northwest-facing 
slopes, and high digital values represent highly illuminated 
areas on southeast-facing slopes. This data set was especially 
useful for splitting spectral clusters representing different 
land-cover classes associated with topagraphically extreme 
versus moderate conditions (e'g., spectrally dark pixels on 
shaded mountain slopes with low shaded-relief digital values 
representing deciduous forest versus spectrally dark pixels 
on moderate terrain with m e w  shaded-relief digital values 
representing the low intensity developed class). 

As an example of the approach employed, a multisource 
data profile was developed for a spectral cluster in which 
there was confusion between decidmus forest and low inten- 
sity developed land-cover classes Plate 7 ) .  Each line in the 

illustration represents the profile of individual deciduous or 
deveIoped pixels. It should be noted that, for graphic repre- 
sentation, values for each ancillary data layer have been 
scaled between 0 and 255. A linear stretch was used, such 
that scaled values could be readily converted to original val- 
ues if desired. As would be expected, substantial differences 
are nut evident between forested and developed pixels for 
TM bands 3, 4, or 5, Further inspection indicates that slope, 
shaded relief, population density, and city lights data are all 
very good for discriminating between the two land-cover cat- 
egories. Elevation and L U ~ A  data also provide some reasona- 
bly consistent separatians, Additionally, this graph indicates 
the appropriate thresholds for each data layer. A model us- 
ing a series of conditional statements that splits the cluster 
into two classes (deciduous forest and Low intensity devel- 
oped) was developed and run fm a subset of the clustered 
mosaic. In this particular case, those class-27 pixels with ele- 
vation values greater than 100 or slope values greater than 20 
or shaded-relief values between 0 and 110 were assigned to 
the deciduous forest class. The remaining class-27 pixels 
were assigned into the low intensity developed class if popu- 

TABLE 2. ~ N ~ O V E R  elnSsE5 AND DEFINITIONS USED IN THIS STUDY. 

hnd-Cover Class Definition 

Deciduous Fo~esl 

Woody Wetlands 

Emergent Wetlands 

Bare: Quarry Areas 

Bare: RockfSand 

Bwe: Transitional 

Row Crops 

Mixed Forest 

Water All areas of open watexeP generally with 
greater than 25 percent cover of water 

Low Intensity Developed Approximately 50 to 80 percent 
construction materials [e-g., asphalt 
concretg, building, etc.); often 
residential development 

High Intensity Developed Approximately 80 to 100 percent 
construction materials; typically low 
percentage of residential development 

Hay/Fasture/Grass Lands Characterized by high percentages of 
grasses and other herbaceous vegetatian 
that are regularly mowed for hay andlor 
grazed by livestock; predominantly hay 
flelds but also includes golf courses and 
city pparks. 
Areas regularly tilled aad planted, often 
on an annual or biennial basis (e.g., 
corn, cotton, vegetable crops] 

Conifer [Evergreed Farest Conifers making up 70 percent or 
greater of the farest (wea is considered 
forested if trees cat.er 40 percent ar 
greater area] 
Both ~onifers and deciduous trees 
present, with neither particularly 
dominant 
Deciduous trees making up 70 percent 
or greater of the forest 
Wetlands with a substantial amount of 
woody vegetation preseat [mostIy from 
National Wetlands Invent-] 
Wetlands with a substantial amount of 
herbaceous vegetation present [mostly 
from National Wetlands Inventory) 
Includes all quarry areas, including 
sandlgravel operations; sparse 
vegetation cover (C 20 percent) 
Rock or sand; sparse vegetation cover 
(r 20 percent-) 
Areas of sparse vegetation cover [< 20 
percent) that are likely to change or be 
converted to other land-cow categories 
in the near future; includes clearcuts 
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lation values were greater than 210 and city lights datan 230. 
Pixels not matching the above criteria were assigned into the 
developed class if spatially coincident with L ~ A  urbanlresi- 
dential categories; otherwise, they were assigned into the de- 
ciduous forest class. The entire procedure was very empiri- 
cal, and generally it took several trials and modifications of 
model parameters using the subset of the mosaicked data set 
before the class splitting models were considered refined 
enough to apply to the entire region (determined by visual 
inspection of model runs). 

Fifty-nine and 54 models were generated for east and 
west halves of the study region, respectively. Generally, from 
three to seven ancillary data layers were used for each 
model. After running the models, data were recombined into 
first-order classification products for each of the two halves 
of the study region. Data from the leaf-off data were then an- 
alyzed with the goal of discerning certain land-cover features 
not easily discriminated using leaf-on TM data. Classes that 
were easily defined using leaf-off data included conifer forest 
and hay/pasture/grass. Both are green in early spring and 
late autumn, and are readily discernible from each other and 
from almost all other land-cover categories. Leaves-off scenes 
were clustered individually using 50 classes with the CLUSTER 
algorithm described earlier. Spectral clusters that unambigu- 
ously corresponded with conifer forest, hay/pastures/grass, 
and mixed forest classes were identified and recoded, and 
this information was incorporated into the land-cover classi- 
fication product. It should be noted that we felt that separate 
analyses of clustered leaf-on and leaf-off data sets was prefer- 
able to clustering and analyzing leaf-on and leaf-off data sets 
together. This is in part because the analyst can make effec- 
tive use of seasonally specific phenological information dur- 
ing the labeling process when data sets represent distinct 
time periods (e.g., leaf-on versus leaf-off). Such information 
is more difficult to use when the two dates are clustered as a 
single unit. It should also be noted that previous work (Vo- 
gelmann et al., 1997) has indicated that minimal gain in 
class discrimination is achieved after multitemporal cluster- 
ing of two TM data sets as opposed to clustering of the two 
data sets separately. However, it should also be noted that 
other investigators (Slaymaker et al., 1996) have achieved ex- 
cellent results after multitemporal clustering of two season- 
ally distinct TM data sets. 

Many bare areas (especially clearcuts and quarries) and 
wetlands are spectrally similar to other land-cover classes, 
and consequently are difficult to accurately classify. How- 
ever, due to spatial characteristics combined with their spec- 
tral properties, these areas can often be readily discerned in 
the TM imagery. Consequently, in this study, quarries, clear 
cuts, and bare rocklsand classes were obtained by means of 
on-screen digitizing of the TM images. Similarly, wetlands 
that were especially large and clearly identifiable from the 
imagery were digitized where digital NWI data were absent. 
These digitized data sets were rasterized and re-coded, as 
were the digital NWI data, into the appropriate land-cover 
categories, and finally incorporated into the land-cover mosa- 
ics. East and west halves of the region were mosaicked, re- 
sulting in a land-cover product for the entire region. This 
product was then inspected in conjunction with the raw im- 
agery, and obvious errors (especially recent residential areas 
in forested areas classified as row crops) were corrected on a 
case-by-case basis. 

Although the TM data sets were mostly cloud-free and of 
good overall quality, there were a few clouds in several por- 
tions of the imagery. Where they occurred, cloud and cloud 
shadow boundaries were digitized, and data from LUDA were 
used to fill in these areas for the final classification product. 
In most cases, clouds and cloud shadows were located in 
forested areas that appeared to be reasonably stable, and 

LUDA data were an adequate surrogate for these isolated ar- 
eas. Also, it should be noted that some of the leaf-off data 
sets were acquired at times seasonally earlier than optimal. 

Ancillary Data Quality 
Numerous studies have shown that the use of ancillary spa- 
tial data with satellite-derived spectral cluster information 
can provide much better land-cover information than the 
spectral cluster information alone (e.g., Cibula and Nyquist, 
1987; Loveland et  al., 1991; Franklin, 1994; Harris and Ven- 
tura, 1995). Generally, ancillary data have been used to aid 
in the class labeling procedure, and have been used to split 
clusters into discrete land-cover classes. Because of the im- 
pact of ancillary data quality on the final land-cover prod- 
ucts, it is pertinent to provide a brief description of some of 
the characteristics of these data sources as they relate to the 
current project. 

DTED and Derivative Products 
The digital elevation models used (Plate 2) were the digital 
terrain elevation data level 1 (DTED-I) products generated by 
the Defense Mapping Agency. These models cover 1- by 1- 
degree blocks, and are distributed by the USGS. The majority 
of the digital elevation models were produced from carto- 
graphic and photographic sources (U.S. Geological Survey, 
1993). While the elevation data set and the derived shaded- 
relief data set both appeared reasonable for Region 111, it 
should be noted that major block-specific differences result- 
ing in distinct seamlines were apparent in the derived slope 
and aspect data sets. These are attributable to differences in 
the data sources used to derive the digital elevation models, 
which are highly variable in quality. 

Population Density 
The population-density data layer was developed by linking 
1990 block-group population census point coverage data 
with block-group boundaries derived from Topologically In- 
tegrated Geographic Encoding and Referencing line files, re- 
sulting in a spatial data layer depicting population density 
on a census block-group by census block-group basis (Plate 
3). Spatial resolution of this data layer relates to the size of 
the individual census block groups, and, thus, is variable 
and relatively coarse throughout the data set. Nonetheless, 
the data set is very good at depicting areas of urban develop- 
ment, which are typically very difficult to delineate solely by 
using spectral classification methods. 

City Lights 
Although acquired in a very different manner, the City Lights 
data set (Plate 4) provides information that has many spatial 
similarities with the population-density data layer (Plate 3). 
This data set is described in detail by Elvidge et al. (1996). 
Briefly, the data set was obtained by the U.S. Air Force De- 
fense Meteorological Satellite Program Operational Linescan 
System using a visible and near-infrared band (0.5 to 0.9 pm) 
during nighttime. The band signal is intensified using a pho- 
tomultiplier tube, making it possible to detect faint emission 
sources (down to watts/cmZ/sr/pm). The nominal resolu- 
tion of the data set used in this study was 2.8 km. This data 
set was generally used in conjunction with the population- 
density data layer in modeling/splitting clusters into devel- 
oped and nondeveloped classes. The data set has advantages 
over the population-density data layer in that the areas of 
brightness corresponding to development are not confined to 
arbitrarily defined political boundaries. City Lights and pop- 
ulation-density data sets both tend to overestimate developed 
classes because of their relatively coarse spatial resolution. 
We noticed while conducting this study that very small pop- 
ulated areas (i.e., less than 1 km2) were often detectable us- 
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ing the City Lights data set. Thus, this data set is character- 
ized by coarse spatial resolution and very fine radiometric 
resolution. While the City Lights data set tended to overesti- 
mate urbanization, regions characterized by low digital num- 
bers were consistently non-urbanized. Thus, if a pixel from a 
particular cluster was located in a region with low City 
Lights digital values, it could be reliably assumed that it did 
not represent an urban condition. Cluster-splitting models 
were constructed to take advantage of this logic. 

LUDA Data 
The LUDA data were derived from aerial photographs from 
the NHAP, NASA, and various special aerial photography pro- 
jects, usually at scales of less than 1:60,000 (U.S. Geological 
Survey, 1990). Features corresponding to Anderson Level I1 
land-cover classes were delineated as polygons from the pho- 
tographs; and minimum mapping units are 4 hectares for 
some categories (e.g., urban categories, water, quarry, transi- 
tional bare, confined feeding operations) and 16 hectares for 
the others (e.g., forest classes, agricultural classes). Because 
most of the aerial photographs used to generate the LUDA 
data are from the 1970% much of the land-use and land- 
cover information is out of date. As with many large region 
land-cover products developed using a number of different 
photointerpreters, there are some seam lines between adja- 
cent quadrangles in the LUDA data set. Depending on the re- 
gion and land-cover unit being analyzed, however, much of 
the LUDA information is still reasonably accurate and useful. 
For the most part, the models developed in this project in- 
corporated the LUDA data mostly as a "last resort" (typically 
utilized during the last steps of the models), thereby mini- 
mizing the impact of the data set. It should be noted that the 
LUDA classes represent a mix of land use and land cover; 
most "natural" landscape units (e.g., wetland and forest clas- 
ses) represent land cover, whereas those heavily impacted by 
anthropogenic activities (e.g., urban and agricultural classes) 
represent land use. The primary focus of our work was land 
cover, and, thus, the LUDA classes were not always compati- 
ble with the our target classes (Table 2). 

NWI 
The data depict location and classification of wetlands 
as defined by the U.S. Fish and Wildlife Service. The ulti- 
mate goal of the NwI program is to generate hardcopy maps 
and digital NWI data sets for the entire United States on a 
7.5-minute auadranale basis. The data sets are developed by 
photointerp~etation~f aerial photographs from various 
sources, including the National Aerial Photography Program, 
NHAP, consolidated Farm Services Agency, NASA, and spe- 
cial project photography (U.S. Fish and Wildlife Service, 
1996). The biggest problem in using this data set is that the 
program is at various stages of completion throughout the 
United States: some states have no coverage by NWI, other 
states have just hard copy maps, and some states have digital 
NWI data as well as map information available. For the pur- 
poses of this study, available digital NwI data were rasterized 
and re-coded into woody wetland, emergent herbaceous wet- 
land, and open water classes and incorporated into the land- 
cover data set. It should be noted that the data sources used 
for generating NWr data range from 1971 to 1992, and thus 
some of the wetlands information from NW may be outdated. 
However, in this project, visual comparisons between NWI 
and TM imagery indicated that this was not a major problem. 

It should be recognized that there are many problems in 
unambiguously delineating wetlands. In a report by Shapiro 
(1995), comparisons were made between various wetland 
data sets, including U.S. Fish and Wildlife Service NwI data, 
U.S. Department of Agriculture Natural Resources Conserva- 

tion Service Wetland Inventory data, National Oceanic and 
Atmospheric Administration (NOAA) Coastal Change Analysis 
Program (c-CAP) data, and State of Maryland Water Resources 
Administration regulatory wetlands data. These comparisons 
were made for a county in Maryland. It was noted that there 
were significant disagreements among the different data sets. 
The N ~ I  data were conservative in delineating wetlands, and 
thus errors of commission were noted to be relatively low, 
whereas levels of omission were relatively high. The heavy 
reliance on NWI data for discriminating wetlands classes in 
the current investigation implies that we will have missed a 
number of the smaller wetlands throughout the region. 

Consistency Checks 
While it is recognized that there is much value of assessing 
accuracies of land-cover classifications, it is difficult to im- 
plement the more traditional methods described by Congal- 
ton (1991) across especially large regions. In the current 
project, the land-cover data layer was compared with four 
sources of data. Together, these sources provide users with 
useful information regarding the quality of the final product. 
The data sources used were (1) NHAP program color infrared 
photographs, (2) a land-cover classification developed for the 
Chesapeake Bay area by NOAA's Coastal Change Analysis 
P r o g r a m ( c - ~ ~ ~ )  (Hittelman et a]., 1994), and (3) 1992 Census 
of the Agriculture data (Bureau of the Census, 1993) . Com- 
parisons were also made with LUDA data. 

Seventy-eight NHAP photographs from throughout the 
study region were used for comparison with the results from 
the final land-cover classification. Most of the photographs 
were acquired during the early 1980s. Areas corresponding 
to the areas covered by the photographs were subset from the 
TM imagery as well as from the final classification. Ten sam- 
ples, each representing a single pixel, were randomly se- 
lected from each image subset using ERDAS IMAGINE software, 
and were located on the appropriate NHAP photographs, pho- 
tointerpreted, and recorded. Class values representing these 
same samples were obtained from the final classification and 
compared with photointerpreted results. For the purposes of 
this investigation, samples were not used unless they could 
be clearly located and photointerpreted on the NHAP photo- 
graphs. When samples were omitted, replacement samples 
were randomly selected until a total of ten interpreted refer- 
ence samples per photograph were obtained (780 samples in 
total). 

In addition, a land-cover classification data set devel- 
oped for the Chesapeake Bay region (Hittelman et al., 1994) 
was obtained from the NOAA C-CAP (Dobson et al., 1995) and 
compared with the land-cover data set developed in this 
study. This data set was generated using 1988 and 1989 
Landsat TM data for a four TM scene region (all located 
within Region 111), and incorporated much field data during 
its development. After reprojecting the NOAA C-CAP data set 
from Universal Transverse Mercator to Lambert Azimuthal 
coordinates, tables of class area estimates and spatial coinci- 
dence were generated for regions of overlapping classifica- 
tions. 

A third consistency check was done using 1992 Census 
of Agriculture (Bureau of the Census, 1993). This data set 
contains statistics of agricultural lands for farms that had 
sold $1,000 or more of agricultural products, or normally 
would have sold, during the census year. Data are compiled 
on a county basis, providing information on total cultivated 
and (or) managed agricultural land as well as information on 
individual crops. In this study, spatial representations of 
Census of Agriculture information were generated for the re- 
gion and compared with spatial representations of amounts 
of agricultural land derived from the Region I11 land-cover 

January 1998 PE&RS 



product, also summarized and tabulated at the county level. 
Primary comparisons were made for total amount of agricul- 
tural land, total amount of grasslands/pasture/hay, and total 
amount of row crops. 

The LUDA data (U.S. Geological Survey, 1990) represent 
the only land-cover data set currently available for the entire 
conterminous United States. As discussed earlier, this data 
set was used during the modeling and class splitting compo- 
nents of this project, although an attempt was made to keep 
the impact of this data set on the final land-cover product to 
a minimum. Even though the data set was used to produce 
the final land-cover data set, it was felt that comparative 
analyses would be helpful to users of the data. For the pur- 
poses of this investigation, LUDA data were re-coded into 
classes that most closely corresponded with the classes of 
the final land-cover data set, and class area estimates were 
compared. 

Results and Discussion 
Final Land-Cover Classiflcation 
The final land-cover data set (Plate 8) is mostly seamless, 
and, when compared with the TM three-band composite 
(Plate I), appears to be reasonable in  terms of general accu- 
racy. Class area estimates for the region (Table 3) indicate 
that approximately 65 percent of the region is forested, 24 
percent is in agriculture, and about 3 percent is developed. 

Comparison with NHAP Photographs 
Comparison between the land-cover data set and the refer- 
ence data obtained from the NHAP photographs (Table 4) 
shows that there is reasonably good agreement for a number 
of the classes (e.g., water, low and high intensity developed, 
deciduous forest, conifer forest, herbaceous wetland), while 
there is some disagreement for a number of other classes 
(e.g., row crops, haylpasturelgrass, woody wetland). The 
overall agreement was 74 percent, and the Kappa coefficient 
was 66 percent. We wish to emphasize that these numbers 
only relate to the degree of similarity between the two 
sources of data. and that thev should not be intermeted as 
accuracy values. This caveat is issued in part because the 
sample size (780 samples) selected from the NHAP photo- 
graphs is low given the size of the study area; a much higher 
number of samples would be required to in order to achieve 
statistical validity. In addition, there are likely to have been 
land-cover changes that have taken place between the time 
that the photographs were acquired (early 1980s) and when 
the images were acquired (early 1990s), which will decrease 
quantitative levels of similarity regardless of levels of accu- 
racy. It is difficult to ascertain the impact of land-cover 
change on these values in this study. Also, it should be 
noted that some classes, most notably the woody wetland 
class, are difficult to identify accurately in the NHAP photog- 
raphy due to spatial and temporal scale characteristics of the 
photographs. Any errors in the reference data will decrease 
overall agreement and Kappa values. Despite these reserva- 
tions, we feel that these estimates are acceptable and lend 
credibility to the approach taken in this study. 

One of the largest sources of disagreement between the 
Region I11 land-cover data set and NHAP reference data relates 
to the two agricultural classes (row crops and haylpasturel 
grass) and the mixed forest class. In the former case, most of 
the confusion is between the two agricultural classes, and 
not between agricultural versus nonagricultural categories. 
When the two agricultural classes were merged into one 
class in both land-cover and reference data sets, overall 
agreement increased to 84 percent, and the Kappa coefficient 
increased to 78 percent. Some of the discrepancies between 

the two agricultural classes are related to different cropping 
patterns during the times of data acquisition. Inter-annual 
crop rotation is a common agricultural practice throughout 
much of the area, and because the different data sets being 
compared represent different years, high levels of agreement 
between row crop and hay/pasture/grass classes should not 
be expected. It should also be noted that some of the dis- 
agreement is attributable to some of the leaf-off data sets 
used in the classification procedure. The hay/pasture/grass 
category was defined using leaf-off TM data sets, based on the 
principle that grasslands usually green up long before row 
crops, and that green herbaceous vegetation is markedly 
spectrally different from other classes at this time of year. 
However, some of the leaf-off data sets used for this discrim- 
ination were acquired too early for optimal separation of 
these two classes (i.e., before consistent grass green-up). 

Accurate delineation of mixed forest as an unambiguous 
class is problematic in many land-cover mapping studies. 
This is in part both a definitional problem as well as a pho- 
tointerpretation problem. In our study, comparisons with 
NHAP photographs, as well as LUDA comparisons, indicate 
that it is probably best to regard the mixed forest class sim- 
ply as a class that can represent any one of the three upland 
forest land-cover categories. 

C-CAP Classiflcation 
Results from the Region I11 classification compare very favor- 
ably with the data set developed by the C-CAP program using 
1988-89 Landsat TM data (Table 5; Plate 9). The C-CAP data 
set was generated for a much smaller area (covered by four 
TM scenes as opposed to 2 1  scenes covered in the current ef- 
fort) and was more field intensive, and thus it is reassuring 
that the data sets are visually as similar as they are. Some of 
the differences are due to the 3 by 3 filtering done on the c- 
CAP product. Results from the Region I11 land-cover classifi- 
cation were not filtered. 

Both C-CAP and Region I11 land-cover data sets provided 
similar class area estimates (Table 5). Some of the most pro- 
nounced differences related to the two agricultural classes. 
While the total amount of land in agriculture compared very 
favorably between the two data sets (27.7 percent versus 30.1 
percent for the Region 111 and C-CAP data sets, respectively), 
there were marked differences between the types of agricul- 
tural land (i.e., hay/pasture/grass versus hay/pasture/grass; 
row crop versus row crop). The TM data analyzed for the C- 
CAP project were from 1988-1989, as opposed to the early 
1990s for the Region 111 data set. As noted in the compari- 
sons between NHAP photographs and the Region 111 product, 
it is likely that the some of the observed differences relate to 
changes in agricultural practices between the two time pe- 
riods. 

While the area estimates provided in Table 5 provide 
some useful comparative information, it should be noted that 
estimates of spatial coincidence provide more precise infor- 
mation regarding the degree that the data sets match. Spatial 
coincidence values were also assessed between the C-CAP and 
Region 111 data sets. It was noticed that spatial coincidence 
values were very high for some categories (e.g., water, herba- 
ceous wetland) but were relatively low for others (e.g., 
woody wetland, mixed forest, conifer forest). In general, spa- 
tial coincidence values are especially sensitive to subtle 
changes in the spatial boundaries of the various classes, and 
that the results from these types of analyses need to be as- 
sessed using caution. This is especially true for classes that 
are highly dissected and narrow (e.g., low intensity devel- 
oped), as opposed to classes that tend to be much more 
blocky and homogeneous (e.g., open water). Slight differ- 
ences in georeferencing will cause major differences in spa- 
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Plate 8. Land-cover data set for Federal Region I l l  developed in this investi- 
gation. 

tial coincidence values for these dissected classes. 
Additionally, we presume that the filtering of the C-CAP prod- 
uct contributed to some of the differences noted. 

1992 Census of the Agriculture 
County-wide spatial comparison of percentage "agricultural 
land" between the Region I11 land-cover product and Census 
of the Agriculture statistics indicated similar patterns and, 
thus, general overall consistencies. As a general rule, Lhe per- 
centage values derived from the Region I11 product were 
higher than the values from the Census of the Agriculture. 
This can be traced in part to the methods applied by the 
Census of Agriculture to derive their estimates. Only farms 
with agricultural-related incomes of $1000 or greater an- 
nually are used to estimate amount of land in agriculture, 
and this likely excludes a substantial amount of land that 
should be categorized as agricultural (e.g., land maintained 
as fields, but not used for profit). In addition, the classifica- 
tion developed for Region 111 relates to land cover, whereas 
Census of Agriculture data relate most closely to land use. 
This becomes somewhat problematic for such areas as golf 
courses, city parks, and large residential lawns. These areas 
are biophysically similar to agricultural classes in that they 
are fertilized, sprayed, and cut, and were classed as haytpas- 
tures/grass in the Region 111 product. For the purposes of this 
comparison, these areas were treated as "agricultural." How- 
ever, these areas are not considered agricultural by the Cen- 

sus, and represent a source of disparity between the two data 
sources. 

It should be noted that similar spatial representations 
were generated comparing percentage hay/pasture/grassland 
values and row crop values separately. The haylpasturel 
grassland values compared very favorably, whereas the row 
crop values did not. In general, the row crop class can be 
difficult to classify using TM data, and in this project, we 
suspect that a number of poor quality grassy fields were clas- 
sified as row crop. 

LUDA Data 
The LUDA data set is the only intermediate-scale source of 
land cover information currently available for the contermi- 
nous United States. We believe that, of the various consis- 
tency checks made in this study, comparison with LUDA data 
would provide the least effective information for evaluating 
the quality of the Region 111 data set. Nonetheless, LUDA data 
have been widely used in the past, and it is worthwhile to 
provide users with comparative information between the two 
data sets. Certainly, the LUDA data compared less well with 
the Region I11 product than with the C-CAP classification 
(Plate 9). This is not surprising because of the coarse spatial 
nature of LUDA data. However, there are some similarities 
with the Region 111 classification, at least at a gross level (Ta- 
ble 3).  

The Region I11 product had substantially more woody 
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TABLE 3. CLASS AREA ESTIMATES FROM AREA OF LUDA AND REGION I l l  LANO- 
COVER CLASSIFICATION OVERLAP. FOR PURPOSES OF COMPARISON, LUDA URBAN 
CLASSES WERE MERGED INTO LOW INTENSITY DEVELOPED (MOSTLY RESIDENTIAL) 

AND HIGH INTENSITY DEVELOPED (MOSTLY COMMERCIAL/~NOUSTRIAL) CLASSES. 

Region III Classification LUDA Data Set 

sion to those that use both data sets, because area estimates 
of urbanldeveloped classes would normally be expected to 
increase rather than decrease over time. In reality, these dif- 
ferences are not related to inaccuracies in either of the two 
data sets, but merely represent differences in spatial detail 
and definitions used. The minimum mapping unit for deline- 
ating urban classes was 4 hectares for LUDA as opposed to 30 
metres for the Region I11 product, and thus the LUDA data set 
"misses" many relatively small non-urban features located 
within predominantly urban settings. In addition, LUDA ur- 
ban classes are related to land use (e.g., commercial, indus- 
trial, residential), whereas the Region I11 land-cover 
developed classes (as well as those in the C-CAP product) 
were defined as percentages of built-up land (Table 2). Thus, 
a one-to-one correspondence between the urbanldeveloped 
classes of the two data sets should not be expected. 

Other discrepancies between the LUDA data set and the 
classification results from this study relate to actual land- 
cover changes that have occurred over the last two decades. 
This is especially true for some of the bare categories, such 
as quarry areas and clearcuts (transitional bare), as well as 
for areas of urban growth. These classes will not exhibit high 
levels of spatial similarities because of the temporal nature of 
these categories. 

Number of Number of 
Hectares Percentages Hectares Percentage Class 

Water 1,867,717 
Low Intensity 

Developed 827,357 
High Intensity 

Developed 264,574 
Hay/Pasture/Grass 

and Row Crop 7,916,678 
Evergreen Forest 1,809,320 
Mixed Forest 3,343,473 
Deciduous Forest 15,788,814 
Woody Wetland 507,178 
Emergent Wetland 270,577 
Bare: QuarriesIGravel 

Pits 156,993 
Bare: RockISand 4,370 
Bare: Transitional 178,180 

wetlands than did the LUDA data set. In the Region I11 classi- 
fication, this class was derived in large part from the NWI 
data, which has been shown to be a conservative data source 
of wetlands information (Shapiro, 1995). Thus, the LUDA data 
clearly underestimate the extent of this class. 

Another notable source of disagreement between LUDA 
and Region I11 classification data pertains to the urbanldevel- 
oped classes. The sum total of the percentage area of the two 
developed classes from the Region I11 data set (1990s vintage) 
is 3.3 percent, as compared with 5 .7  percent for the LuDA 
data set (1970s vintage). This is a potential source of confu- 

Conclusions 
The approach described in this paper has yielded a very 
good land-cover classification product for a large region. Al- 
though there are some classification errors within the data 
set (most notably, row crops versus haylpastureslgrasslands), 
the large-area product appears to have many desirable char- 
acteristics (e.g., mostly seamless, and reasonable in terms of 
accuracy based on visual inspection and consistency checks). 
Because of the scope of the study, we wish to emphasize that 
the data set is especially appropriate for regional analyses 
and applications. Currently, the data set is being used for 

TABLE 4. CONSISTANCY MATRIX OF NHAP PHOTOGRAPH-INTERPRETED POINTS AND CORRESPONDING REGION I l l  LANDCOVER CLASSIFICATION RESULTS. VALUES 
REPRESENT NUMBERS OF OBSERVATIONS FOR EACH PAIR OF CLASSES. BASED ON 780 POINTS. 

NHAP Data 
Urban Urban 
Low High Row For; For; For; Wet-land; Wet-land Bare; Bare; Bare; 

Class Water Inten Inten Grass Crop Evergreen Mix Dec Wood Herb. Quarries Rock/Sand Trans 

Water 

Urban; Low 
Intensity 

Urban; High 
Intensity 

Grass 

Row Crop 
B 

Forest; 
s Evergreen ' Forest; 4 Mixed a 

Forest; 
Deciduous 

Wetland; 
Woody 2 Wetland; 
Herbaceous 

Bare; 
Quarries 

Bare; 
RocWsand 

Bare; 
Transitional 
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TABLE 5. CLASS AREA ESTIMATES FROM AREA OF C-CAP AND REGION 111 LAND 
COVER CIASSIFICAT~ON OVERLAP (4 TM SCENE REGION). 

Class 

Region 111 
Classification C-CAP ClassScation 

Number of Number of 
Hectares Percentage Hectares Percentage 

Water 
Low Intensity 

Developed 
High Intensity 

Developed 
HayIPasturelGrass 
Row Crop 
Evergreen Forest 
Mixed Forest 
Deciduous Forest 
Woody Wetland 
Emergent Wetland 
Bare Soil/Rock/Sand 

Classes 
Transitional Bare 
ShrubIScrub 
Tidal Flats 

various activities, including derivation of regional landscape 
pattern metrics, providing land-use planners with general 
land-cover area estimates, and for use in pesticidelherbicide 
runoff models. We recognize, however, that many local scale 
phenomena may have been missed in such an effort, and 
that there is no surrogate for more in-depth analyses for ob- 
taining more detailed and precise information relating to lo- 

calized conditions. For these latter purposes, we believe that 
the Region 111 data set may be useful for providing a first-or- 
der overview. 

The methods described in this study are very empirical. 
The class-by-class splitting operations employed involve 
many interactive steps and require numerous decisions by 
the analyst. While there are certainly other methods of gener- 
ating land-cover information using multiple sources of data, 
we found the current approach reasonably efficient, and pro- 
vided a reasonably consistent land-cover data set. Other tech- 
niques, such as regression tree analysis (Michaelsen et al., 
1994) and neural nets hold much promise for automating the 
procedure and decreasing the number of decisions that an 
analyst needs to make during the course of the work. While 
certainly meriting exploration, such research was beyond the 
scope of this investigation. 

We view this project as a first step towards the genera- 
tion of a base-line intermediate-scale land-cover data set for 
the conterminous United States, and are currently expanding 
our analyses to other Federal Regions in the eastern United 
States. We will explore incorporating Gap Analysis (Scott et 
al., 1996) data when they become available on a state-by- 
state or region-by-region basis, with the potential of resulting 
in a product with much more detail for the natural land- 
cover classes. Ultimately, we wish to use the general ap- 
proach described here to generate a thematically and spatially 
consistent national land-cover data set for multiple applica- 
tions. 
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Plate 9. Comparison among Coastal Change Analysis Program data, Region I l l  data developed in this study, 
and land-use and land-cover data for a portion of the region in the Washington, D.C. area. 
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