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Abstract 
Line intercept sampling was used to determine if boundaries 
between desert scrub vegetation stands corresponded with 
boundaries between regions in an image derived from a seg- 
mentation algorithm applied to Thematic Mapper (TM) data 
for the Anza-Borrego Desert State Park, California. An image 
segmentation algorithm developed by Woodcock and Har- 
ward (1992) was applied to images comprising TM bands 3, 
4, and 5, from April 1987, principal components images 
based on April 1987 and June 1990 imagery, and each with 
texture added. The Global Positioning System (GPS) was used 
to determine coordinates of both physiographic (land-form) 
and vegetation boundaries in the field as they intersected 
line transects. These boundary locations were then registered 
to the segmented images. Image region boundaries that fell 
within E tolerances (spatial error bounds) of surveyed bound- 
aries were considered accurate. Image region boundaries 
showed less than 10 percent omission error but about 50 per- 
cent commission error when compared with the true loca- 
tions of vegetation and physiographic boundaries. The use of 
image principal components and texture in the segmenfa- 
tions did not produce anticipated increases in the correspon- 
dence between field-mapped and image-region vegetation 
boundaries, although there is some suggestion that multidate 
principal components may be sensitive to vegetation bounda- 
ries, and texture to physiographic boundaries. 

Introduction 
In order to transform raster-based remotely sensed data into 
thematic polygonal data to be stored in a vector-based GIS, it 
is necessary to minimize the number of polygons which must 
be created in the vector form (Lunetta et al., 1991). Image seg- 
mentation is a method of generalizing information derived 
from classification of remotely sensed imagery so that a mini- 
mum mapping unit (MMU) larger than a pixel is created. The 
purpose of image segmentation is "to define regions in the im- 
age that correspond to the objects in the ground scene" (i.e., 
vegetation stands: Woodcock and Harward, 1992), and those 
regions can then be converted to vector polygons [Gahegan 
and Flack, 1996). We conducted a study in a desert scrub en- 
vironment (Anza-Borrego Desert State Park, southeastern 
California) to determine if segmentation could be used to ac- 
curately delineate regions in an image that correspond to 
vegetation stands at a scale which was consistent with a tar- 
geted MMU. Park personnel had estimated that, for resource 
management purposes, an MMU of 2 hectares would capture 
significant variation in vegetation patterns (S. Augustine, per- 
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sonal communication). Our study evaluated segment boundary 
accuracy using a means of field verification that had not 
previously been applied to the products of automated seg- 
mentation. 

Woodcock and Harward's (1992) region-growing image 
segmentation algorithm has previously been applied to forest 
and chaparral stand delineation (Woodcock and Harward, 
1992; Woodcock et al., 1994; Shandley et al., 1996) and to 
segmentation of a suburban scene (Ryherd and Woodcock, 
1996). These applications have mainly focused on vegetation 
forming a nearly complete canopy. In the arid landscape of 
the present study, however, there is a complex arrangement 
of vegetation with a partial canopy. Consequently, surface re- 
flectance as measured in a multispectral image is dominated 
by the bare soil component and has high spatial variance. 
This prompted the question: How would the segmentation 
algorithm perform in this type of spectrally heterogeneous 
environment? Vegetation reflectance may not contribute 
enough to the overall signal for boundaries that delineate 
vegetation stands to be detected in the image. It may be that 
reflectance from the soil surface results in polygons repre- 
senting physiographic (land-form or geomorphic) units in- 
stead. It has often been noted, however, that vegetation 
distributions and geomorphology are closely related in arid 
environments (Lacaze and Lahroui, 1987), and we hypothe- 
sized that additional scene information such as spectral tex- 
ture and multitemporal data could discriminate between the 
two. 

The purpose of this research was to determine if bounda- 
ries between desert scrub vegetation stands, located on the ter- 
rain using line intercept sampling, corresponded to bounda- 
ries between regions in an image derived from a segmentation 
algorithm applied to Thematic Mapper (TM) data. 

Background 

Image Segmentation 
segmentation &st became a significant remote sensing image 
arocessine method in the late 1970s when aaicultural inven- " " 
tories strived for increased accuracy. Segmentation (reviewed 
in Haralick and Shapiro (1985), Pal and Pal (1993), and Le- 
Moigne and Tilton (1995)) incorporates simple spatial char- 
acteristics with those that are spectral by dividing a scene 
into groups of contiguous pixels. Once the image is broken 
up into regions, each region can be assigned to a theme 
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(land-cover or vegetation class) using classification based on 
average characteristics, or on the plurality from a per-pixel 
classification overlaid on the segmentation (see also Gahegan 
and Flack (1996)). It would be naive to expect an image seg- 
mentation algorithm based solely on spectral and textural 
pattern recognition (boundary detection or region growing) to 
delineate image objects that correspond, one-to-one, to the 
objects of interest (vegetation stands, land-cover polygons), 
as human-photointerpreted polygons would. Therefore, based 
on empirical evaluation, almost all region-growing segmenta- 
tion approaches are designed to "undermerge" (not create 
excessively large regions). Final merging takes place when 
the regions are labeled, and some adjacent regions are as- 
signed to the same class. 

Our study utilized the region growing segmentation 
method developed by Woodcock and Harward (1992). A re- 
gion growing scheme analyzes the spectral and spatial (i.e., 
texture) properties of pixels and uses these to merge the pix- 
els into homogeneous regions (Mason, 1979). Woodcock and 
Harward's algorithm was designed to conservatively "grow" 
regions in an image by controlling a number of parameters, 
including the rate of pixel merging, the degree of merging, 
and minimum and maximum region size (Woodcock and 
Harward, 1992). It uses multiple passes through the data to 
merge pixels according to the input parameters, with limita- 
tions on how many merges are allowed in a single pass. We 
chose this segmentation algorithm because it was primarily 
designed for vegetation stand delineation (Woodcock and 
Harward, 1992). We define a vegetation stand as a contigu- 
ous area of the landscape with similar plant composition and 
structure, and site characteristics (soil type, slope aspect) 
(Franklin and Woodcock, 1997). A great number of image 
segmentation algorithms exist (see reviews cited above), and 
could be evaluated using the methods we describe below. 
However, our purpose was not to compare algorithms, but to 
demonstrate the application of the line-intercept sampling 
method for comparing vegetation stand boundaries recog- 
nized in the field to image regions formed by automated seg- 
mentation, which, to our knowledge, has not been done 
before. 

Map Assessment 
There has been a tremendous increase in the demand for re- 
motely sensed data for spatial database development (Davis 
and Simonett, 1991; Star et a]., 1991). Consequently, groups 
such as the American Society for Photogrammetry and Re- 
mote Sensing (ASPRS) and the National Committee for Digital 
Cartographic Data Standards (NCDCDS) have been forced to 
evaluate the accuracy standards by which spatial data are 
transferred into a GIS (Thapa and Bossler, 1992). In the case 
of segmented images, it is difficult to make quantitative state- 
ments about their accuracy. Object boundaries change de- 
pending on whose interpretation is used. The most widely 
used approach for evaluating a segmented image has been to 
compare its classification accuracy to a per-pixel classified 
image by referencing both to a set of point observations or a 
photointerpreted reference map (Fu and Mui, 1980; Cross et 
al., 1988; Shandley et al., 1996; Rhyerd and Woodcock, 
1996). The resulting error matrices are compared, and the 
segmented images were shown to be more accurate in each 
case cited above. 

However, error matrices yield a global estimate of the- 
matic classification error, which convolves both boundary 
location (delineation) and attribute (class label) accuracy 
(Congalton and Green, 1993). This approach is necessary 
when polygon objects are used to model continuously vary- 
ing terrain properties (Goodchild, 1987), as is the case for 
photointerpreted vegetation stands. Because image segmenta- 
tion often defines object boundaries in a processing step sep- 

arate from assigning attribute labels (although frequently 
based on the same image data), we wished to evaluate the 
accuracy of boundary placement rather than the thematic ac- 
curacy of classified pixels within polygons. And because 
photointerpreted vegetation stands boundaries can be ex- 
tremely variable (see Edwards and Lowell, 1996), we used 
field observations of boundary locations for evaluation. 

Skidmore and Turner (1992) proposed the ratio of cor- 
rectly located boundaries to total boundary length as a mea- 
sure of the "boundary positional accuracy" (BPA) of a map. 
Reference data are collected using the line-intercept sam- 
pling method they described. If an object boundary falls 
within an acceptable error band at the intersection with a 
field transect, then the boundary is found to be correctly 
mapped. This technique has been applied to a number of for- 
estry related problems, including forest type mapping, forest 
fuel sampling, and assessment of logging waste (Skidmore 
and Turner, 1992). In addition, in the present study we also 
calculated the proportion of field-located (true) boundary po- 
sitions that had an image segment boundary within the error 
band as a measure of boundary omission error in the seg- 
mentation map. This is a more useful measure of segmenta- 
tion performance when image boundaries with no 
corresponding field boundaries (commission error) result 
from "undermerging" and are expected to disappear during 
labeling. 

The most well known of the boundary positional error 
models is the epsilon (E) band which creates a buffer zone of 
possible true line location around a cartographic line. The 
delineation of this zone may be visualized as the process of 
rolling a circle of radius E along both sides of the line (Chris- 
man, 1983). This provides a means of representing the de- 
gree of locational uncertainty introduced in the 
raster-to-vector conversion and image classification pro- 
cesses. The significant sources of error (i.e., registration, digi- 
tizing, generalization) can be treated independently and 
summed to estimate the value for E (Veregin, 1989). 

Methods 
The main obiective of this research was to determine if 
boundaries between vegetation stands in an arid area corre- 
sponded to those determined by an image segmentation algo- 
rithm (Woodcock and Harward, 1992), or if, alternatively, 
segmentation boundaries were more related to soil surface 
properties characterizing physiographic (land-form) units 
(e.g., bajada, wash, rocky upland). We also wished to evalu- 
ate segmentation boundaries based on different input varia- 
bles: Thematic Mapper bands 3, 4, and 5; principal 
components from a multitemporal image; and image texture. 
The following hypotheses were addressed: 

(l)(a) Boundaries between natural vegetation stands in the 
study area will correspond to boundaries between image 
regions derived from segmentation. 

(I)@) Alternatively, boundaries between physiographic (land- 
form) units in the study area will correspond to bounda- 
ries between image regions derived from segmentation. 

(2) The segmentation of principal components images derived 
from multitemporal data will improve the correspondence 
between vegetation stand and image region boundaries over 
a single-date segmentation. 

(3) The incorporation of a texture band into the image data set 
that is segmented will improve the correspondence between 
vegetation stand and image region boundaries. 

Description of Study Area 
Anza-Borrego Desert State Park covers approximately 2400 
km2 in much of eastern San Diego County and parts of River- 
side and Imperial Counties (Lindsay and Lindsay, 1985). The 
climate is arid, with annual precipitation of 127 to 356 mm 
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TABLE 1. VEGETATION TYPES FOUND I N  THE STUDY AREA, ACCORDING TO THE 

CLASSIFICATION SYSTEM OF SPOLSKY (1979) AND CROSS-REFERENCED TO 
HOLLAND (1986), A CLASS~FICAT~ON SYSTEM THAT IS LESS DETAILED BUT MORE 

WIDELY USED. ASTERISKS ~ N D ~ C A T E  VEGETATION TYPES WITHIN WHICH PLANTS 
TEND TO HAVE A CLUMPED DISTRIBUTION; OTHER VEGETATION TYPES ARE 

CHARACTERIZED BY MORE EVENLY DISTRIBUTED PLANTS 

Holland (1986) spolsky (1979) 

30000 Scrub and Chaparral 
33100 Sonoran Creosote Bush Scrub 

33200 Sonoran Desert Mixed Scrub 
* 33210 Mixed Woody 

33220 Mixed woody/succulent 

* 
* 33300 Colorado Desert Wash 

Scrub 
60000 Riparian 
* 62200 Desert Dry Wash Woodland 

2.0 Shrub Communities 
2.4 Sonoran Creosote Bush 

(Larrea) Scrub 
2.9 Larrea-Encelia scrub 

2.6 Ocotillo fan scrub 
2.13 Encelia-semisucculent 

scrub 
2.14 Opuntia-Agave scrub 
2.15 Agave scrub 
2.19 Hymenoclea (cheesebush) 

wash scrub 
6.0 Woodland Communities 
6.7 Psorothamnus (smoke tree) 

wash woodland 

and summer high temperatures in excess of 38°C. Pacific ma- 
rine storms create a distinct rainy season (January through 
March) which is needed to germinate spring flowers (Lindsay 
and Lindsay, 1985). The park has over 600 species of desert 
plants. Examples of the major vegetation types characterized 
by dominant species are listed in Table 1. The study area is 
approximately 26 krnz and is located on the northeast side of 
State Highway S-2 in the southern end of the park (Figure 1). 
The geomorphology of the area is characterized by a gently 
sloping bajada with alluvial fans and washes. This area was 
chosen for its moderate topography, which accounts for its 
odd shape because adjacent mountains and badlands were 
excluded. 

Image Data 
Anza-Borrego Desert State Park has been imaged by the 
Landsat TM sensor with a nominal 30-m ground resolution. 
Images acquired on 24 June 1990 and 13 April 1987 were 
georeferenced to the California Zone 6 State Plane grid (NAD 
27) by STX Inc. Registration was based on a deterministic 
sensor-Earth geometry model using the Landsat ephemeris 
data recorded with the Thf image. Terrain correction was 
based on 1:250,000-scale digital elevation models. The 1987 
image was purchased after the 1990 image, and the upper 
left pixel and the ground control points from the 1990 image 
were used for registration in order to minimize registration 
error between the two images. 

These image dates were chosen in order to explicate the 
differing phenologies of various vegetation types in the 
spring and summer. Based on their availability to us, the im- 
ages that were used were recorded three years apart and field 
data were collected seven years after the first image. Ideally, 
imagery and field data from the same calendar year would 
have been used. However, it was reasoned that their xero- 
phytic characteristics tend to protect the shrub communities 
from short-term interannual fluctuations in temperature and 
precipitation. Also, judging from the monthly precipitation 
totals from the years of data collection, there seemed to be 
no anomalies that would cause vegetation boundary changes 
(see Abeyta, 1995). Any slight migration of vegetation bound- 
aries was therefore not taken into account in the error-band 
distance (see below) which might make the positional accu- 
racies calculated in this study somewhat conservative. The 
three-month seasonal separation between the two images was 
deemed adequate to emphasize the phenological contrasts of 

certain vegetation types. Based on field observation, May and 
June harbored the most change because ephemeral annual 
growth dried up quickly during that period. 

April was chosen for the single-date image segmentation 
due to the greater coverage of vegetation in the spring which 
should reduce the influence of the soil background compo- 
nent in the spectral signature. In addition to a three-band 
April image comprising the red (Figure 21, near-infrared, and 
mid-infrared wavelength regions, two other data layers were 
incorporated into the segmentations. The first layer consisted 
of principal components based on the covariance matrix 
from a composite image that was created using TM bands 3, 
4, and 5 from both the April and June images. The first four 
components explained 87, 6, 4, and 2 percent of the variance 
in the multidate data (99 percent in total) and so were used 
as input to segmentation. Principal components (PC) analysis 
is a data compression technique, and while it would have 
been desirable to use all bands from both dates to calculate 
PC images, some bands were not available because the archi- 
val tape had become corrupted. Consequently, we chose 
bands 3, 4, and 5 for the single- and multidate analyses be- 
cause they have been shown to be related to vegetation pat- 
terns in arid regions (Franklin, 1991). The June imagery was 
only used in the principal components analysis. The other 
variable used was a texture band. A variance-based texture 
image was created where the digital number of a pixel is the 
local variance in an adaptively placed 3 by 3 window (Ry- 
herd and Woodcock, 1996). The texture band was created 
from April band 3 (red) because of its usefulness in discrirni- 
nating between vegetation and soil, and its prior use in vege- 

county roads 

study area 

I Anza-Borrego I 

Figure 1. Study area (shaded) located within 
the Anza-Borrego Desert State Park in 
southeastern California. 
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Figure 2. (a) April 1987 TM Band3 image, corresponding 
to the study area delineated in Figure 1. (b) Segmenta- 
tion resulting from the April three-band image, shown for 
April Band 3 (where the grey tone of each segment is the 
average Band3 grey tone of all pixels falling within the 
segment). 

tation mapping (Franklin et al., 1986; Woodcock et al., 
1994). 

minimum region size, maximum region size, and texture 
scaling were found to be the most influential on segmenta- 
tion outcomes. After many trials with varying parameters 
(Abeyta, 1995), a set of revised values was chosen (Table 2). 

The global merge tolerance (t) specifies the Euclidean 
distance in feature space within which adjacent pixels would 
be allowed to merge (in units of Digital Number based on 
spectral bands and the other variables which were quantized 
to one-byte images) and was set at 6. The merging coefficient 
(m) was set at 0.1 (no more than 10 percent of the regions 
were merged on each pass). The normal region merge value 
(Nnormin) produces merging in auxiliary passes for those 
regions with smaller areas than the specified value. Its value 
was defaulted to the value of the absolute minimum number 
of pixels parameter (Nabsmin). When a texture band was 
added, a weighting factor of 6 was used (only coincidentally 
the same number as t). This value proved to be the greatest 
change from those parameter values used by Shandley et al. 
(1996). Weighting of the input bands in image segmentation 
will be discussed further below. 

In summary, the following input variable combinations 
were segmented: (1) April band 3, 4, and 5 image; (2) princi- 
pal components (PCS) 1 through 4 from a six-band multitem- 
poral image; (3) three-band April plus texture; and (4) first- 
four PCs plus texture. 

Unelntercept Sampling of Boundary Locations 
Line-intercept sampling was used to determine the actual lo- 
cations of vegetation and physiographic boundaries in the 
field. Pending the selection of "best" segmentation param- 
eters, a segmentation using Nabsmin = 20 and Nmax = 400 
was used to estimate the number of field transects needed. A 
set of 40 randomly located 0.8-km transects was overlaid on 
the segmented image which produced an average of 3.3 in- 
tersections per transect. It was then necessary to determine 
the least number of transects needed to assess boundary ac- 
curacy at a 95 percent confidence level using the following 
formulas from Skidmore and Turner (1992): 

where 

&(x) = coefficient of variation of estimated boundary 
length (2) of polygons per unit area; 

n = estimated number of line transects needed; 
t = Student's t statistic at a 95 percent confidence level; 

E = prespecified allowable error fraction; 

m = [i] '; 
cP(x) 

where 

TABLE 2. PARAMETER VALUES USED I N  WOODCOCK AND HARWARO'S 
SEGMENTATION ALGORITHM ( t  IS EUCLIDEAN DISTANCE I N  FEATURE SPACE I N  

DIGITAL NUMBER UNITS: Nabsmin, Nnormin, Nviable AND Nmax ARE 
EXPRESSED AS NUMBERS OF PIXELS; m AND s ARE UNITLESS) 

Parameter Value 

Image Segmentation global merge tolerance t 6 
The Woodcock-Harward segmentation algorithm was imple- merging coefficient m 0.1 
mented using the IPW (Image Processing Workbench) soft- absolute minimum pixels in a region Nabsmin 30 

ware (Frew, 1990). The segmentation parameters used by minimum region size merging threshold Nnormin 30 

Shandley et al. (1996) served as a reference for determining 
~ ~ ~ ~ g ~ i ~ ~ ~ i ~ ~ ~ ~ x  

100 

optimum values for the desert scene. Although many of the texture scaling factor 
100 
6 

parameters values were varied during a sensitivity analysis, 
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TABLE 3. ~TERAT~VE TRIALS FOR CALCULATING THE NUMBER OF TRANSECTS 
NEEDED TO ASSESS BOUNDARY ACCURACY AT THE 95 PERCENT CONFIDENCE LEVEL 

WHERE n = NUMBER OF LINE TRANSECTS, m = TOTAL NUMBER OF a 

INTERSECT~ONS, A = NUMBER OF ~NTERSECT~ONS PER TRANSECT, AND C V ( X )  IS 
DESCRIBED IN EQUATION 1 

m = number of total intersections of transect lines 
with polygon boundaries; and 

m A = -. 
n 

where 
A = average number of intersections per transect. 

A value for n can be found iteratively by first using an 
estimate of n in Equation 1, setting E = 0.1, and using Equa- 
tions 2 and 3 to calculate an A which can be compared to 
the A value obtained from a segmented map. Thus, the esti- 
mated number of transects should result in an A value less 
than or equal to the map A value. An estimated 1 2  transects 
of length 0.8 krn resulted in an A = 3.4 (Table 3) which ap- 
proximates that found on the preliminary segmented image 
(A = 3.3). 

GPS-located field boundaries were used to produce a 
ground reference data set with a locational accuracy of 
within 5 m (Slonecker and Hewitt, 1991). Field data were 
collected in April 1994 using the Trimble GPS Pathfinder 
Professional Unit. Random coordinates were generated for or- 
igins of field transects and fieldworkers navigated to them. 
Then, 0.8-km transects were walked following a randomly 
chosen constant azimuth. A set of 50 waypoints (individual 
GPS readings) was recorded at each field boundary encoun- 
tered and averaged. Notes were taken on the time, boundary 
type (vegetation or physiographic), approximate coordinates, 
and . biophysical . c:heracteristics of areas lying on either side 
of the boundary. 

Boundaries were determined visually (e.g., without 
quantitative vegetation sampling) but according to the fol- 
lowing criteria. Both species composition and density were 
observed and noted at a scale (grain) of approximately 2 ha 
to determine the location of vegetation boundaries. A list 
was made of the dominant shrub species, as they define the 
vegetation types (Table 1) and would be the most likely to 
influence spectral response of the surface. Identification of 
boundary locations was determined to be consistent among 
different observers. 

Trimble's PFINDER software (Trimble Navigation Ltd., 
1992) was used to process the GPS data. The averaged and 
differentially corrected field data were combined into a sin- 
gle file and edited using field notes to separate points falling 
on vegetation boundaries from those on physiographic 
boundaries. The two new files were then converted into ARC/ 
INFO (ESRI Inc., 1994) point files. 

Each of the segmented images was first converted from 
an ERDAS.LAN (ERDAS Inc., 1991) image file to an ARCIINFO 
GRID raster file. A point-to-boundary distance could now be 
calculated in ARCIINFO (see Figure 3). Using the NEAR com- 
mand, a file was created that calculated the distance from 
each field point to the nearest ARC boundary circumscribing 
a region. The files containing the distances were then ex- 
ported to spreadsheet software for calculation of accuracy 
statistics. 

Boundary Positional Accuracy Assessment Using Epsilon Error ( E )  

We estimated that georeferencing, resolution, and GPS error 
contribute 1 5  m (per image date), 15  m, and 5 m of error, re- 
spectively, making e equal to 35 m for single-date datasets 
and 50 m for two-date PC images. With subpixel registration 
accuracy estimated from control points, it is still possible 
that the actual location of a pixel could be misreferenced by 
half a pixel (15 m). The 15-m resolution error is a conse- 
quence of trying to resolve a finite line out of the coarser ras- 
ter representation of a boundary (Crapper, 1980). The 5-m 
average GPS error results from the differential correction pro- 
cess (August et a]. 1994). In effect, a 70- (or loo-) m error 
band is created around the field boundary within which a 
mapped boundary could be accurately placed. Distances were 
calculated in units of feet, because the coordinate system used 
was State Plane, but will be presented in metric units. 

The estimated boundary length of polygons per unit area 
(8 is 

where m is the number of intersections between tran- 
sects and polygon boundaries and L is the total length of 
transect lines. Skidmore and Turner (1992) give the estimate 
of BPA as the ratio (X,) of correct boundary density (where 
map boundaries coincided with field boundaries), X,, to esti- 
mated total boundary density, X,: i.e., 

Xr 2L - mr x=-=--- 
Xm - am, mm 

where m, is the number of transect intersections where 
mapped boundaries correspond to true boundaries, and m, 
is the total number of transect intersections with map bound- 
aries. In fact, this is a measure of commission error (what 
proportion of mapped boundaries have no corresponding real 
boundary?) and could be referred to as User's BPA. As noted 
above, in evaluating a segmentation prior to classification, 
omission errors are more important (what proportion of real 
boundaries have no corresponding mapped boundary?). 
Therefore, we also calculated a Producer's BPA, X,: i.e., 

where mf is the total number of transect intersections with 
true boundaries. 

Field boundary delineation Polnt to segmented boundary dismnce 

Figure 3. In the left diagram, the point represents the in- 
tersection of a vegetation boundary (dashed line) with the 
line transect (solid line with arrows) - the coordinates of 
this point are determined with the GPS in the field. The 
right diagram illustrates a region boundary formed be- 
tween the pixels comprising two adjacent regions in the 
segmented image for the same location. Locational accu- 
racy IS a function of the average distance from the field 
points to the nearest segment boundary. 
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Figure 4. An enlargement of a small portion of the study 
area showing the polygons resulting from image segmen- 
tation (of the April three-band image), and the width of 
the error bands. Some boundary points (where field tran- 
sects intersected with vegetation or physiographic bound- 
aries) are shown. 

TABLE 4. NUMBER OF TRANSECT INTERSECTIONS WHERE TRUE (FIELD) AND MAP 
(SEGMENTATION) BOUNDARIES COINCIDE (m,), TOTAL NUMBER OF MAP 

BOUNDARIES (m,), TOTAL NUMBER OF TRUE BOUNDARIES (m,), USER'S (X,) AND 

PRODUCER'S (X,) BOUNDARY POSITIONAL ACCURACY, AND MEAN DISTANCE 
B E W E E N  FIELD AND I M A G E  BOUNDARY POINTS ( I N  METRES) FOR PHYSIOGRAPHIC 

AND VEGETATION BOUNDARIES, FOR IMAGE SEGMENTATIONS RESULTING FROM 
DIFFERENT COMBINATIONS OF I N P U T  VARIABLES 

Boundary Distance 
Image Input Type m, m, mf X, x, (m) 

April 3-band land form 
vegetation 

PC 1-4 land form 
vegetation 

April+texture land form 
vegetation 

PC+texture land form 
vegetation 

If the boundary density is high (as in an undermerged 
segmentation), or E is large, a large proportion of the mapped 
area will fall within the error bands and high agreement be- 
tween field and mapped boundaries may occur by chance 
(Figure 4). This would yield the false conclusion that BPA is 
high. In order to rule out this conclusion, we did one further 
accuracy evaluation. The true boundary locations were com- 
pared to mapped boundary locations while E was decreased 
from 35 to 18.3 m. If a high BPA results from the area cov- 
ered by the error bands, accuracy should be roughly equal to 
the proportion of the map covered by the &-bands. If there is 
a real correspondence between true and mapped boundary 
locations, accuracy should be higher than the proportion of 
the map within the error bands, for a given E, and should not 
decrease as rapidly with E .  

Results 
Although there are published standards for locational 
(NCDCDS: see Thapa and Bossler (1992)) and thematic (Ander- 
son et al.. 19761 maD accuracv. there are no standards for 

I .'I 

boundary accuracy as it was measured in this study. Error 
modeling for the integration of remote sensing and GIS is re- 
viewed by Goodchild (1994), but no accuracy standards were 
given that could be applied here. Skidmore and Turner 
(1992) showed an example where a User's BPA of 65 percent 
corresponded to a nonsignificant difference between mapped 
and true boundary density, and an areal map accuracy of 
92.7 percent. We used the standard for thematic accuracy (85 
percent) as a guideline for determining acceptable accuracy 
levels in this study. In comparing the results from different 
trials, it was not possible to test for significant differences 
among accuracies because the segmentation trials were not 
based on independent data sets. 

The total number of polygons resulting from segmenta- 

tion of the 1987 April image (Figure 2b) using the optimum 
parameters (Table 2) was 828; the average number of pixels 
in each polygon was 95 (8.6 hectares). The number of map 
(segmentation) boundaries intersected by the 12 field tran- 
sects (m,) was 84, and the numbers of vegetation and physi- 
ographic boundaries were 43 and 44, respectively (54 unique 
locations) (Table 4). This indicates that the 12 transects were 
adequate for estimating boundary density in the segmented 
image and the field data sets at the 95 percent confidence 
level (40 intersections required; Table 3). This occurred be- 
cause the preliminary segmentation used to estimate the 
number of transects needed had fewer regions (greater maxi- 
mum region size) than subsequent segmentations, and coinci- 
dentally had about the same boundary density as the field 
data sets. Based on Producer's BPA, we failed to reject hy- 
potheses l a  and l b  which stated that vegetation and physio- 
graphic boundaries will correspond to image segmentation 
boundaries more than 85 percent of the time. However, 
User's BPA shows a large proportion of segment boundaries 
(51 percent) that have no corresponding vegetation or physi- 
ographic boundary. Further, a large proportion of the 
mapped area falls within the &-bands placed around the seg- 
mented region boundaries (Table 5 and Figure 4). Could the 
large number of true boundary locations that fall within the 
E distance of a region boundary do so by chance, owing to 
the large area covered by the &-bands? 

The proportion of the map within the 35-m 8-bands was 
83 percent (Table 5). This was startling when compared with 
the true field boundary overlay which had a Producer's BPA 
of 95 percent (vegetation and physiography combined; 54 
unique locations). This result would seem to support the no- 
tion that so much of the area falls within the &-bands that 
many boundary locations may correspond to an image region 
boundary by chance. However, when the E distance was de- 
creased from 35 m to 30.5 m (Table 5), the proportion of the 
map within the E-bands fell to 76 percent while Producer's 
BPA remained high at 92 percent. When E = 18.3 m (Table 

TABLE 5. PRODUCER'S BOUNDARY POSITIONAL ACCURACY (BPA) RESULTING FROM 
REDUCED E DISTANCE FOR OVERLAY OF ALL BOUNDARY LOCATIONS (VEGETATION 
AND PHYSIOGRAPHY COMBINED, /l = 54) ONTO SEGMENTATION DERIVED FROM 
1987 APRIL TM THREE-BAND IMAGE,  AND PROPORTION OF EACH MAP FALLING 

WITHIN THE E-BANDS (SEE FIGURE 4) 
- - - - - - - 

Boundary Positional 
E Distance Area in E band Accuracy 
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5), these values decreased to 56 percent for the proportion of 
the map within the &-bands and 64 percent BPA. While the 
smaller E is now affecting it, the Producer's BPA for true 
boundary locations is still higher than the proportion of the 
map within the &-bands. Therefore, the agreement between 
field and segmentation boundaries seems to reflect more than 
simply the proportion of the area delineated by E relative to 
polygon size. There is an effect of E on BPA (Figure 4). But E 

reflects the true magnitude of locational uncertainty between 
digital image or map data and locations on the Earth's sur- 
face which must be accounted for in locational accuracy as- 
sessment and remote sensing-GIS integration. 

Principal components 1 through 4 were segmented, and 
the resulting Producer's BPA was about the same as that cal- 
culated for the April three-band input, allowing for the larger 
error band (Table 4). Therefore, Hypothesis 2 is neither con- 
b e d  nor rejected for these data. However, the vegetation 
boundaries have slightly higher User's and Producer's accura- 
cies than the physiographic boundaries only in the trials in- 
volving PC images (Table 4). 

The number of polygons created when TM bands 3, 4, and 
5 plus texture were segmented was 842, and they had an aver- 
age size of 93 pixels (8.4 hectares). The PCA plus texture seg- 
mentation was very similar, having 870 polygons with an 
average size of 90 pixels (8.1 hectares). In both cases, the tex- 
ture band increased the Producer's BPA of the physiographic 
boundaries by a few percent (Table 4). However, with the ad- 
dition of texture, the vegetation Producer's accuracies either 
increased (for the PC image) or decreased slightly (for the 
April image). Results based on User's accuracy also varied. 
Therefore, Hypothesis 3 was neither confirmed nor rejected. 

Discussion 
The Producer's BPA was high for all segmentations (omission 
errors were low for vegetation and physiographic boundaries). 
However, there were many segment boundaries intersecting 
each transect that were undetectable in the field (User's BPA 
-50 percent; Table 4). The reliability of the field data collec- 
tion was confirmed by comparing vegetation boundary loca- 
tions detected by different observers. The locations were 
remarkably consistent between observers, and the field meth- 
ods were felt to be adequate for evaluating the presence of 
physiographic boundaries, as well as vegetation boundaries for 
those classes highlighted as "clumped" in Table 1 (see Abeyta 
(1995) for details). 

As expected, there was a strong association between vege- 
tation and physiographic boundaries with a high percentage of 
them coinciding (63 percent). After completing the sampling, 
it was felt that only those types of vegetation that exhibited a 
clumped distribution at the scale of the MMU would be accu- 
rately delineated in the field. Segmentation boundaries might 
be detected in the evenly distributed vegetation types where 
they are spectrally heterogeneous (due to surface texture, dif- 
ferences in vegetation density, etc.), but no boundary would 
be detected in the field because the area had the same "aver- 
age" vegetation composition. 

The commission error represented by the low User's BPA 
might also be explained by illumination differences, spectral 
differences due to the effects of slope angle and aspect. The 
study area was originally chosen to minimize extreme varia- 
tion in relief in order to control for illumination differences, 
yet it still contained small hills and gullies. A visual compari- 
son between the segmented images and the April image 
showed that many of the excess segmentation boundaries 
were a result of slope and aspect changes. 

Another possible explanation for the commission error is 
the nature of the segmentation algorithm used, as discussed 
previously. This algorithm was designed to be conservative in 
its merging of regions, and the maximum region size is set as 

a parameter (Woodcock and Harward, 1992; see Table 2). This 
will tend to create excessive polygons and thus more bounda- 
ries. Adjacent regions can later be merged when they are as- 
signed to the same land-cover category in the labeling process 
with the common boundary being dissolved. The advantage of 
this approach is that dissimilar areas never end up in the 
same segment and higher thematic map accuracy is attained. 
In this sense, the delineation of boundaries in the segmenta- 
tion process where none exist is not a serious error, and, in 
fact, is part of the algorithm's design. 

The results based on multi-date PC images are inconclu- 
sive because principal components based on the covariance 
matrix have ordered and highly unequal variance properties, 
and, therefore, PC 1 would have dominated the segmentation. 
Stable boundaries of perennial vegetation communities are 
likely to be expressed in the first principal component of a 
multidate analysis, and a segmentation based only on the 
lower-order components 2 to 4 (not shown in this paper) 
yielded very low boundary accuracy (79 percent Producer's 
accuracy for vegetation and physiographic boundaries com- 
bined; Abeyta, 1995). However, lower-order components are 
likely to be related to ephemeral vegetation components that 
differ among the major plant communities. Standardizing or 
weighting the PC variables, as was done with texture, may 
have yielded different results. Because the PC images showed 
some promise in identifying vegetation boundaries, this 
should be explored further. 

Conclusion 
The purpose of this study was to determine if vegetation stand 
boundaries in an arid area corresponded to image region 
boundaries delineated using the image segmentation algorithm 
by Woodcock and Harward (1992). Vectorized boundaries 
from Landsat TM segmented images were overlaid with a vec- 
tor coverage of field referenced points generated fiom GPS sur- 
veys to determine if they were within an E distance (35 or 50 
m) of observed boundaries as a measure of locational accu- 
racy. 

Producer's boundary positional accuracies were greater 
than 90 percent for all combinations of image input data. The 
physiographic boundaries tended to be delineated with 
slightly higher accuracies except in the segmentations derived 
from a multitemporal Principal Components image, which 
could be explored further using standardized or weighted PCs. 
Both an April three-band image and a PC image showed 
slightly increased accuracy in physiographic boundary deline- 
ation when a texture band was added. This suggests that the 
texture band may be influenced by the soil background rather 
than the vegetative cover. However, all accuracy differences 
were very slight. User's BPAs were low (errors of commission 
were high, -50 percent) but we did not consider this as im- 
portant a measure of segmentation accuracy, for reasons ex- 

- - 

plained above. 
The studv area that was selected was a bajada with little 

topographic &lief. If a mapping scheme were implemented us- 
ine seementation for a desert environment, adiustments would " " , , 
be needed to account for other vegetation types and for ex- 
treme slope and aspect changes encountered in the mountains 
and badlands. These conditions would probably lead to even 
greater "over-segmentation," and efforts would have to con- 
centrate on giving accurate labels to the resulting map poly- 
gons. This study sewed as a first step in evaluating image 
segmentation for generating mapping units for vegetation and 
physiography in an arid environment. Despite the coarse reso- 
lution of TM data, both vegetation stands and physiographic 
units can be separated into polygons. This was found to be 
true within the constraints of locational error allowances for 
georeferencing, resolution, and GPS. Those locational error 
sources (resolution, registration) make boundary positional ac- 
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curacy assessment difficult when boundary locations are de- 
rived from raster remotely sensed data. 

Acknowledgments 
This research was supported, in part, by a Grant-in-Aid from 
San Diego State University. We would like to thank David 
McKinsey for invaluable technical support; Scott Augustine 
and other personnel at California Department of Parks and Re- 
creation and Anza-Borrego Desert State Park for encouraging 
and advising us; Michael Allen, Thomas Hack, Paul Mc- 
Cullough, Greg Nichols, and Douglas Stow for their help and 
advice; Curtis Gray and Ellen Hines for assistance with image 
processing and cartographics; and several geography students 
who assisted in the field as the temperature soared! We are in- 
debted to two anonymous reviewers for greatly improving the 
manuscript with their thorough critiques. 

Abeyta, A.M., 1995. Assessing the Utility of Image Segmentation in an 
Arid Environment, Master's Thesis, Department of Geography, San 
Diego State University, San Diego, California, 83 p. 

Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer, 1976. A h n d  
Use and Land Cover Classification System for Use with Remote 
Sensor Data, U.S. Geologic Survey Professional Paper 964, 28 p. 

August, P., J. Michaud, C. Labash, and C. Smith, 1994. GPS for envi- 
ronmental applications: Accuracy and precision of locational data, 
Photogrammetric Engineering 6 Remote Sensing, 60(1):4145. 

~ h r i s m a n , ~ . ~ . ,  1983. Epsilon filtering: A technique for automated 
scale changing, Technical Papers of the 43rd Annual Meeting of 
the American Congress on Surveying and Mapping, pp. 322-331. 

Congalton, R.G., and K. Green, 1993. A practical look at the sources of 
confusion in error matrix generation, Photogrammetric Engineer- 
ing b Remote Sensing, 59(5):641-644. 

Crapper, P.F., 1980. Errors incurred in estimating an area of uniform 
land cover using Landsat, Photogrammetric Engineering b Remote 
Sensing, 46(9):1295-1301. 

Cross, A.M., D.C. Mason, and S.J. Dury, 1988. Segmentation of re- 
motely-sensed images by a split-and-merge process, International 
Journal of Remote Sensing, 9(8):1329-1345. 

Davis, F.W., and D.S. Simonett, 1991. GIS and remote sensing, Geo- 
graphic Information Systems, Vol. 1 (D.J. Maguire, M.F. Good- 
child, and D.W. Rhind, editors), Longman, England, pp. 191-213. 

Edwards, G., and K.E. Lowell, 1996. Modeling uncertainty in  photoin- 
terpreted boundaries, Photogrammetric Engineering b Remote 
Sensing, 62(4):377-391. 

ERDAS, Inc., 1991. ERDAS Field Guide, Second Edition, ERDAS, Inc., 
Atlanta Georgia. 

ERSI, Inc., 1994. Understanding GIs: The ARC/INFO Method, Environ- 
mental Systems Research Institute, Redlands, California. 

Franklin, J., 1991. Land cover stratification using Landsat Thematic 
Mapper data in Sahelian and Sudanian woodland and wooded 
grassland, Journal of Arid Environments, 20:141-163. 

Franklin, J., T.L. Logan, C.E. Woodcock, and A.H. Strahler, 1986. Co- 
niferous forest classification and inventory using Landsat and dig- 
ital terrain data, BEE Transactions on Geoscience and Remote 
Sensing, GE-24(1]:139-148. 

Franklin, J., and C.E. Woodcock, 1997. Multiscale vegetation data for 
the mountains of Southern California: Spatial and categorical res- 
olution, Scale in Remote Sensing and GIS (D.A. Quattrochi and 
M.F. Goodchild, editors), CRCJLewis Publishers, Inc., Boca Raton, 
Florida, pp. 141-168. 

Frew, J.E., 1990. The Image Processing Workbench, Ph.D. Dissertation, 
Department of Geography, University of California, Santa Barbara. 

Fu, K.S., and J.K. Mui, 1980. A survey on image segmentation, Pattern 
Recognition, 13(1):3-16. 

Gahegan, M., and J. Flack, 1996. A model to support the integration of 
image understanding techniques with GIs, Photogmmmetric Engi- 
neering b Remote Sensing, 62(5):483490. 

Goodchild, M.F., 1987. A model of error for choropleth maps, with 

applications to geographic information systems, Autocarto, 8:165- 
174. 

, 1994. Integrating GIs and remote sensing for vegetation analy- 
sis and modeling: Methodological issues, Journal of Vegetation 
Science, 5(5):615-626. 

Haralick, R.M., and L.G. Shapiro, 1985. Image segmentation tech- 
niques, Computer Vision, Graphics and Image Processing, 29:100- 
132. 

Holland, R., 1986. Preliminary Descriptions of the Terrestrial Natuml 
Communities of California, State of California, the Resources 
Agency, Department of Fish and Game, Sacramento, California, 
156 p. 

Lacaze, B., and L. Lahroui, 1987. T616d6tection des formations g6o- 
morphologiques et de la v6g6tation dans un terretoire du Haut At- 
las oriental marocain B partir des donn6es du satellite SPOT, 
International Journal of Remote Sensing, 8(5):751-763. 

La Moigne, J., and J.C. Tilton, 1995. Refining image segmentation by 
integration of edge and region data, IEEE Transactions on Geosci- 
ence and Remote Sensing, 33(3):605-615. 

Lindsay, L., and D. Lindsay, 1985. The Anza-Borrega Desert Region, 
Wilderness Press, Berkeley, California, 179 p. 

Lunetta, R.S., R.G. Congalton, L.K. Fenstermaker, J.R. Jensen, K.C. 
McGwire, and L.R. Tinney, 1991. Remote sensing and geographic 
information system data integration: Error sources and research is- 
sues, Photogmmmetric Engineering b Remote Sensing, 5 7(6):677- 
687. 

Mason, D.C., 1979. Segmentation of terrain images using textural and 
spectral characteristics, Computers and Digital Techniques, 2(6): 
251-259. 

Pal, N.R., and S.K. Pal, 1993. A review of image segmentation tech- 
niques, Pattern Recognition, 26(9):1277-1294. 

Ryherd, S., and C.E. Woodcock, 1996. Combining spectral and texture 
data in  the segmentation of remotely sensed images, Photogram- 
metric Engineering b Remote Sensing, 62181-194. 

Shandley, J., 1993. Using Image Segmentation to Map Vegetation 
Stands in the Pine Creek Watershed, Cleveland National Forest, 
Master's Thesis, Department of Geography, San Diego State Uni- 
versity, San Diego, California, 141 p. 

Shandley, J., J. Franklin, and T. White, 1996. Testing the Woodcock- 
Harward image segmentation algorithm in an area of southern 
California chaparral and woodland vegetation, International Jour- 
nal of Remote Sensing, 17(5):983-1004. 

Skidmore, A.K., and B.J. Turner, 1992. Map accuracy assessment us- 
ing line intersect sampling, Photogrammetric Engineering & Re- 
mote Sensing, 58(10):1453-1457. 

Slonecker, E.T., and M.J. Hewitt 111, 1991. Evaluating locational point 
accuracy in a GIs environment, Geo Info Systems, (June):36-44. 

Spolsky, A.M., 1979. An Overview of the Plant Communities of Anza- 
Borrego State Park, unpublished report prepared for Anza-Borrego 
State Park, Borrego Springs, California. 

Star, J.L., J.E. Estes, and F.W. Davis, 1991. Improved integration of re- 
mote sensing and geographic information systems: A background 
to NCGIA Initiative 12, Photogrammetric Engineering b Remote 
Sensing, 57(6):643-645. 

Thapa, K., and J. Bossler, 1992. Accuracy of spatial data used in geo- 
graphic information systems, Photogrammetric Engineering b Re- 
mote Sensing, 58(6):835-841. 

Trimble Navigation Limited, 1992. GPS Pathfinder User's Manual, 
Trimble Navigation Limited, Sunnyvale, California. 

Veregin, H., 1989. A Taxonomy of EITO~ in Spatial Databases, National 
Center for Geographic Information and Analysis, Technical Paper 
89-12, NCGIA, Santa Barbara, California, 115 p. 

Woodcock, C.E., and J. Harward, 1992. Nested-hierarchical scene mod- 
els and image segmentation, International Journal of Remote 
Sensing, 13(16):3167-3187. 

Woodcock, C.E., J.B. Collins, S. Gopal, V.D. Jakabhazy, X. Li, S. Ma- 
comber, S. Ryherd, V.J. Harward, J. Levitan, Y. Wu, and R. War- 
bington, 1994. Mapping forest vegetation using Landsat TM 
imagery and a canopy reflectance model, Remote Sensing of Envi- 
ronment, 50:240-254. 

(Received 15 December 1995; revised and accepted 11 March 1997; re- 
vised 9 April 1997) 

January 1998 PE&RS 


